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FINITE SPAN WINGS IN COMPRESSIELE FLOW¥

By E. A. Krasilshchikova

This work is devoted to the study of the perturbations of an airstream
by the motion of & slender wing at supersonic speeds. :

A survey of the work related to the theory of the compressible flow
around slender bodies was given in reference 14 by F. I. Frankl and
E. A. Xarpovich.

The first works in this direction were those of L. Prandtl (ref. U)
and J. Ackeret (ref. 23) in which the simple problem of the steady motion
of en infinite span wing was studled. Borbely (ref. 25) considered the
two-dimensional problem of the hermonically-oscillating nondeformable
wing in supersonic flow by using Integrels of special types for solutions.

Schlichting (ref. 24) considered the particular problem of the flow
over two-dimensional rectangular and trapezoidal wings. To solve this
problem, he applied Prandtl's method of the acceleration potential which
he looked for in the form of e potential of a double layer. However, as
shown later, Schiichting made an error and arrived at an incorrect result.

In 1943, Busemann (ref. 26) proposed the method of solving the prob-
lem of the conical flow over a body by starting from the homogeneous
solution of the wave equation. This method was modified by M. I. Gurevich
who, in references 11 and 12, solved a series of problems for arrow-shaped
and trisngulsr wings when the flow, perturbed by the wing motion, is
conical. The work of E. A. Karpovich and F. I. Frankl (ref. 13) was
devoted entirely to the problem of the suctlon forces of arrow-shaped
wings.

In 1942, at a hydrodynamics seminar in Moscow University, Prof. L. I.
Sedov proposed the problem of the supersonic flow over slender wings of
finite span of arbitrary plan form.

In response to this proposal of L. I. Sedov, there appeared in
1946-4T & series of works by Soviet authors on the question of the super-
sonic flow over wings of finite span.

The first work in this direction was our candidate's dissertation
(ref. 5), in which we found the effective solution for e limited class

*Scientific Records of the Moscow State University, Vol. 154,
Mechanics No. 4, 1951, pp. 181-239.

The appendix represents a condensation made by the translator from a
document "Modern Problems of Mechanice,” Govt. Pub. House of Tech. Theor.
Literature, (Moscow, Leningrad) 1952, pp. 94-112.
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of harmonically~oscillating wings. In reference 6 we solved the problem
for wing influences by "tip effect." . Later works (refs. 15, 16, and 17)
were devoted to the same problem.

In reference 6, using an idea of L. I. Sedov as a basis, we reduced
the problem of the influence of the tip effect on harmonically-oscillating
wings to an integral equation.

The questlion of the flow over wings of finite span remained open for
some time. -

At the start of 1947, there appeared works in which different methods
were proposed for solving the tip effect problem which would be applicable
to any particular wing plan forms. In reference 18, M. D. Khaskind and
S. V. Falkovich solved the problem, in the form of a series of special
functions, for a harmonically oscillating triangular wing. Later,

M. I. Gurevich generalized this method (ref. 19). In reference 20,

L. A. Galin reduced the problem of determining the velocity potentisl of
an oscilllaeting wing to the problem of finding the steady-motion velocity
potential and gave a solutlion, in series, for the velocity potential of
a rectangular, oscillating wing cembered in the directlion of the oncoming
stream.

The methods, proposed by different authors, for solving the problem
of the flow over wings of finite span do not permit the solution of the
problem for any finite-span wing and may only be applied to a limited
class of wings.

Parallel developments in this direction were made by the foreign
authors Puckett (ref. 21) and Von Kermén (ref. 22) who solved the problem
of the steady flow over finite-span, symmetricall wings at zero angle of
attack. As is known, such wings produce no "tip effect" and the study
of the perturbation of the alrstream by thelr motlon presents no mathe-
matical difficulties.

In references 6, 7, and 8 we proposed a method of solving the finite-
span wing problem by constructing and solving an integral equation which
considered the wing plan form in both steady motlion and oscillating
harmonically. In reference 9 we generalized the problem toc more genersl
forms of unsteady wing motion by the method of retarded source potentials.

Introducing characteristic coordinates we solved the integral equa-
tion for wings of arbitrary plan form and represented the solutlon for
steady wing-motion in quadratures and for the harmonically-oscillating
wing in a power serles of the parameter defining the oscillation frequency.

The present work is a detalled explenation and further development
of our papers (refs. 6 to 9) which were published in the Doklady, Akad.
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Nauk, USSR. In this work we propose an effective method of solving
aerodynamic problems of slender wings in supersonic flow.

All the results and problems explained in this paper were reported
by the suthor in 1947-48 to the USSR Mechanics Institute, V. A. Steklov
Mathematics Institute, Moscow Unlversity, ete.

In the first part of the work we find a class of solutlions of the
wave equation, starting from which we obtain the solution to the problem
of determining the velocity potential of some wing plan form in unsteady
deforming motion. The obtained solution contains the solution of the
two-dimensional problem as a special case. In the same part of the work,
we solve in quadratures the problem of steady supersonic flow over a
wing of arbitrary surface and plen form. The effective solution for
wings of small span is similarly given. We obtain formilas determining
the pressure on the wing surface in the form of contour integrals and
integrals over the wing surface.

The suthor thanks L. I. Sedov for reading the manuscript.
PART I
1. SETTING UP THE PROBLEM

1. Let us consider the motion of a thin slightly cambered wing at
a small angle of attack.

We will consider the basic motion of the wing to conslst of an
advancing, rectilinear motion at the constant supersonic speed wu. Let
be superposed on the basic motion, a smell additional unsteady motion in
which the wing surface may be deformed.

Let us take the system of rectangular rectilinear coordinates Oxyz
moving forward with the fundamental wing velocity wu. The Ox-axis 1is
directed opposite to the wing motion and we take the x,y-plane such that
the =z coordinate§ of points on the wing shall be small (figs. 1 and 2).

We will consider the normel velocity component on both sides of the
wing surface to be given by

Vo = B8 + AE[E + of | (1.1)

lResults of Part I, sections 6 and 7 were found by the author in
May, 1947 at the Mathematics Institute, Akad. Nauk, USSR.
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The first component defines the wing surface
Ag = =uBg (1-2)

where PBg 1s the angle of attack of a wing element. Tﬁe second compo-
nent defines the additional unsteady motion of the wing. The functlions
Ag and A1 and o are considered given at each point of the wing

surface.

We will assume that the fluild motion is irrotationsl and that there
are no externsl forces.

The velocity potential of the perturbed stream o(x,y,z,t) is
represented in the form

o(x,y,2z,t) = CPO(x:y,Z) + (Pl(x:y':z;t) (1.3)

where the potential ¢@p corresponds to the basic steady motion of the
wing and the potential ? corresponds to the additional unsteady motion.

Thus the proJections of the velocity v of the fluid particles on
the moving Oxyz coordlnates are determined by

o} e} o o 0
S O O o
ox ox dy dy oz dz

The functions @y and ¢; and thelr derivatives will be considered

first-order quaentities and second-order quantities will be neglected.
With these assumptions it 1s known that the potential ® satisfies the

wave equation which in the moving asxes is

2 2 2 2 2
(a2 - u2) ) + a2 é_fl.+ a2 oo eu,é_fl== 0 (L.4)
ox2 3y2 3z2  dt2 Otdx

and the potential ¢, satisfles

32 >2 32 '
(8.2—112) _io..!.az ._9)_0._.(. a,2__?ig=0 (1.5)
ax2 32 e

where a 1s the speed of sound in the undisturbed stream.

A vortex surface, called the vortex sheet, trails from the side of
the wing surface opposite to 1ts motion. Just as on the wing surface
the veloclty potential undergoes a Jump discontinuity on this sheet.
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We represent the projection of the vortex sheet on the x,y-plene as the
semi-infinite strip =; (fig. 1) extending along the x-axis to infinity

from the trailing edge of the wing.

Let us establish the boundary conditions which the functions P
and @, satisfy.

Let us transfer the boundary conditions on the wing surface parallel
to the z-axis onto the projection X of the wing on the x,y-plane,
which is equivalent to neglecting second-order quantities in comparison
.with first-order ones. Therefore on the basis of equation (l.l) we cobbtain
the streemline condition

B gy o = m e + ) (1.6)

which must be fulfilled on both the upper and lower sides of Z.

The kinemstic condition, which expresses the continuity of the normal
velocity components of the fluid particles, must be fulfilled on the dis~
continuous surface of the velocity potential and on the vortex sheet.

We transfer the condition on the vortex sheet parallel to the z-axis
onto its projection 5; on the x,y-plane which is again neglecting second~

order quantities. Therefore we have the conditions

S| _{a_@;]
[éz_]z=+0 ]z=+0 dz Z==0 (1.7)

to be fulfilled on Zy.
Furthermore, the dynamic condition which the potentlals P and
¢, satisfy must be fulfilled on the vortex sheet.

fi
[e 7] %
g
I |
N
1]
[
o\.
&

Since the pressure remalns continuous on crossing from one side of
the vortex sheet to the other, then from the Lagrange integral

- éﬂ-i(ﬁi@)‘e @)2 (@)2 - [
F 3 ox 2 |\ox * dy. ¥ dz + 1), 1P d[‘p
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Xeeping equation (1.3) in mind and neglecting second-order quantitles,
we obtbgiwv =

s} o}
_8.92_0. = a(po it A AL = éﬂ)—l—+u——i (1.8)
3% {z=40 ax z_-O ot 0x |z=10 ot - X {2=-0

which must also be fulfilled on Z;. -

After boundary conditions (1.6) and (1.7) are established, we
correctly consider that, to the same degree of approximation, the surface
of discontinuity of the velocity potential - the vortex surface ~ lies
entirely within the x,y-plane. Therefore, the functions @ and @

are odd functions in =z
Qolx,y5-2) = “@o(x;Y:z): Cpl(x.vY)"Z:t) = “cPl(x:Y;z;t) (1.9)

Combining equations (1.8) and (1.9) we conclude that the functions
P and P satisfy the respective conditions

KLY 9y a¢1
—_— = S—— z 1.
5 0, 5 + Bx =0 onZXjy (1.10)

Since the motion of the wing 1s supersonic, the medium is disturbed
only in the region bounded by the respective disturbance waves represent- 4
able by a surface enveloping the characteristic cones with vertices at
points of the wing contour. Ahead of this surface -~ in front of the wing -
the medium is at rest, therefore, the veloclty potentiel is a constant
which we assume to be zero. Hence we have the condition on the disturb-

ance wvave

-

Qb(x:Y;z) =0, ¢1(X:Y:Z)t) =0 (1.11)

The potentials P and @; are contimious functions everywhere
outside the two dimensional region ¥ + X; and, as was established, are
odd in z, therefore, in the whole x,y-plane outside of the region Z + Z;
where the medium is perturbed, the following conditions are satisfied:

@o(X,y,O) = 0, Ql(x:YJo:t) =0 (1.12)
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The region where equation (1.12) is satisfied is denoted in figure 1
by 5 eand It

Thus the considered hydrodynamic problem is reduced to the following
two boundary problens:

I. To find the function @,(x,y,2z,t) which satisfies equation (1.4)
and boundary conditions (1.6), (1.10), (1.11), and (1.12).

II. To find the function ¢O(x,y,z) which satisfies equation (1.5)
and boundary conditions (1.6), (1.10), (1.11), and (1.12).

Since the functions P9 and @, are antisymmetric functions rels-

tive to the z = 0 plane, it is sufficient to solve the problem for the
upper half plane. From the solution of boundary problem I it 1s possible
to obtain the solution of IT if the function £ in the first be considered
a constant equal to unity, and Ay replaces Aj.

2. VELOCITY POTENTTIAL. OF A MOVING SOURCE WITH VARTABLE INTENSITY

1. Let us construct a solution of equation (l.k) as the retarded
potential of a source moving in a straight line with the constant velocity
u and having an Iintensity which varies with time according to fl(t).

Let us consider the infinite line along which, at each polnt from left -
to right, sources with velocity wu start to function one after the other
with the variable intensity q = f£o(t - t1)f1(t). The law of variation

of the function fo is the same for all the sources if the initial
moment of esch source is considered to be the moment when it came into

being.2

The function £ has the same value for all the sources at each

instant. Let a source at an arbitrary polnt of the O0'x'-axis be acting
at time %3 (fig. 3). The retarded potential of the velocity at the

point M as a result of such a system of sources is represented in the

fixed coordinates by o
r sof - gaf -4

o1%(x',y",2',%) =Af aty
. 't L 4 r
1
T = ka' + ut)® + y'@ 4 212 (2.1)

2prandtl (ref. 3) considered an analogous problem with g = folt - t1).
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where A 1s a constant with the dimensions of a veloecity. The limlts
of integration ;' and t%1" take into account those scurces which
affect M at time t. The origin of the fixed coordinates 0' 1is
placed at thé point at which the source started at + = O.

Introducing the new variable of integration 7 = a(t - %3) - r and
transforming to the coordinate system x=x'+ut, y=y', 2z =3'
which is moving forward in a straight line with the velocity u, we
trensform equation (2.1) into

et - sl el w e () }
o*(x,¥,2,%) = %le fO[a]fl{t ul - a2 * e - a2 x a a2 - 1 (ye + 22) dv (2.8)
o]

EBEEEE

If it is assumed that wu > a then the velocity potential at M(x,y,z)
is the sum of the expressions (2.2), with the minus sign in front of the
radical teking into account the effect of the sources in the strip AC
on M and with the plus sign taking Iinto account the sources on CB. The
smaller root of the radicand 1s taken as the upper limit of integration
T1. It 1s easy to see that in this case both roots are real, positive

qusntities (fig. 3).

On the basis of expression (2.2) we now construct = velocity potential
at M from the sources moving with speed w > & which have an intensity
which varies with time as f£(t). The derivation remains valid if the
additive constant oy 1s added to the argument t of the function f£4.

Putting the sources at the origin, we find the velocity potential from
equation (2.2) by considering the interval of integration from 0 +to ?l

to be vanishingly small. Then, neglecting the term (E)T and putting

T
1
% Jﬁ fo(g)dr = C where C 1is a constant, we obtain the desired solu-

tion for equattion (1.4) in the general form

£3t + oy - ux & VXE—G“E— )(y2+z2)

W2 - 82 w2 - g2 a
+

@*(K:Y:Z:t) = C

= :
2 - (8 _ 1\h2 + 28) .
e - (8- )2 - =

et rag - 2 e (22 (y2 + 22
o 1 1" @2 - g2 & -a2 a2

e

(2.3)
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Let us note that each component of the arbitrary function £ as
well as the constant C and o in equation (2.3) is separately also

a solution of equation (1.k).

In equation (2.3) putting oy = O and the velocity of motion of the
source u = 0, we arrive at the well-known solution for a spherical wave.

If the velocity of motion of the source is u < a thend to obtain
the retarded potential of a moving source the right side of equation (2.3)
must be limited to the first component.

Considering the function f7 in equation (2.3) to be constant, we

arrive at the Prandtl (ref. 3) solution for the retarded potential of a
moving source of constant intensity

\/xz - >(y2 + 22)

2. It is possible to obtain, by the same method, the velocity
potential of a source with the variable intensity fl(t) moving
arbitrarily.

For example, in the case of rectilinear motion of the source when

dFl(t)

the motion is given by X =F(t), Y =0, Z =0 and when >a

2

that is, the motion of the source is supersonic, the velocity potential
of the source at the origin of a coordinate system moving with the source
is

P*(x,y,2,t) = Cfl(tl) (5 )
\/[x + (%) - Fl(tl] 24324 22 - Ec + Fy(t) - Fl(t] —Lt—l—
or1{ty %) (2.4)
dF]_('trl*)

\/E; + By (t) - Fl(tl*ﬂ 2iy24 22 I:x + 7y (8) - Fl(tl*-il i

vhere the parameters +t3 = t1(x,y,z,t) and %1% = t1%(x,y,2,t) are
resl roots of -

a(t - 1) ~- ‘/[x + Fy(t) - Fl(tl):l 2y y2+ 2220 (2.5)
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If @Ij(t)/d{] <a, i.e., the source velocity is subsonic, then to obtain

the velocity potential one must be limited to the one component in equa-
tion (2.4) which corresponds to the smaller of the values of the parameters

t 1 and 't_']_*

The function expressed by equation (2.4) satisfies the linear equa-
tion with varilable coefficients

2] 52 2 2 2 2
[d.Fl(t):l T Y T Py 3y
at ax2 ay2 aze a_b2 dt oxot te ox
(2.6)
If the source moves with constant acceleration as Fl(t) = ~ut - pgﬁ

(wvhere b 1is & cohstant) then equation (2.5) is an algebraic equation
of the fourth degree in +t; with two real roots.

Formuls (2.4) conteins the Lienard-Weigert (ref. 27) formula as a
special case when the source intensity 1s constant.

3. DERIVATION OF THE BASIC VELOCITY POTENTTIAL FORMULA

1. We apply a solution of the form (2.3) of the wave equation (1.k4)
to the above-mentioned boundary problem I.

At each point of the x,y-plane let us place sources with the poten-
tial o¥. Hence, we will consider C and o 1n equation (2.3) functions

of points of the x,y-plane and we will replace a; by o and f; by £.

As a consequence of the linearity of equation (l.h), 1ts solution
is a funetion @] expressed by

£ oyt o+ at,n) - ax-p) (x - )2 - 3y - 9 - x%2
(xjy'.vz t) = ff C(g)'ﬂ) x { w2 - a2 2 - BZJ } andt +
8(x,y,%) Wx-na-kw-wezfﬁ
(x - 8) 2 2 2 _ 42,2
£t +alt,n) - o2 8y - 2)2 - xP(y - )2 - ¥R
Mhﬂx{ o - o @'ﬁv — }m; (3.1)
8(%,y,2) \/(x - 8)2 - Ky - )2 - k22 -
5 -
where k = {/Y¥- - 1. _
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The region of integration S(x,y,z) is that part of the x,y-plane
which lies within the characteristic fore-cone of eguation (1. 11-5 fronm
the point with coordinates x,y,z (fig. 4).

The solution of eguation (3.1) will give the velocity potential
arising from the additional motion of the wing if C(X,y) is determined
from the boundary conditions of the problem on the X,y-plane.

Let us introduce the new varisble of Integration 6 into equa-
tion (3.1) in place of 7

n=y - -]]Z-‘/(x - g)2 - ¥°z%cos 6 (3.3)

Then equation (3.1) becomes

@ (x,¥,2,%) = f f { Y - = \kx - £)2 « ¥°2° cos e}x

X;YJZ

Iyt + GI}:Y - % \I(X - )2 - ¥%22 cos -e] -

u(x-¢) ___ & _ )2 _ 2,2
a\ﬁc £)2 - k°2° sin 0 >A04AE +

u2—a.2 u2—a

fC{,y— \ﬁX—E)a k222 cos 6} X
S(x,y
£ t+aE,,y-%Wx—§)2-k2z2cos{‘ -

wx-8), = . ‘ﬁ: - 6)2 - ¥22 gin 6 Laeae (3.1)

u2—a2 U.2-8.
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Let us note that for any point M(x,y,z) of space it is possible
to isolate from the reglon 8S(x,y,z) & region S' in which the vari-
able of integration has the limits

A

x-kz S ¢ cr, 0 6§ =x

or

ﬂ2=Y'%\ﬂx-§)2-k222 § ‘ngy'.i.%wx_g)g_kazt?:nl

where C' is a constant satisfying the inequality C' < x - kz. In the
remalning reglon S - S' the limits of integration either do not depend
on z or depend on 2z only in the combination kz2.

Differentlating equation (3.4) with respect to 2 we find the rela-
tion between C(x,y) and af(x,y) and the normal derivative of the
velocity potential a¢1/az at any point of the x,y-plane

-1]9
o(x,7) = - = {f[t + axx,y]} l[a;ﬂ] (3.5)
2=0

Comparing equation (3.5) with equation (1.6) we conclude that on
the wing

clx,y) = - -21;; Ay (x,y) (3.6)

l.e., the function C(x,y) is given.

Therefore, the veloclty potential Py ma& be computed from egua-

tion (3.1) by taking equation (3.6) into account for those points M(x,y,z)
of space for which the region of integration 8(x,y,z) does not extend
beyond the limits of the wing. :

If the leading and trailing edges of the wing are given by x = y(y)
and X = Xl(y)’ respectively, and if, therefore, ¥ and X, satisfy
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-ﬂ-dey ) l < cot o* (3.7
chl(y) < cot a¥* (3.8)
dy =

(wvhere o* 1is the semi-vertex angle of the characteristic cone) on the

leading and trailing edges of the wing, respectively, then in particular,
equation (3.1) yields the effective solution of the problem of finding

the velocity potential P everywhere on the wing surface because in
this case the reglon of Integration S does not extend beyond the wing
for sny point M(x,y,0) on it (fig. 5).

Also, in particulsr, equation (3.1) gives a solution of the plane
problem if C and o are considered as functions of one variable -
C =C(x) and o« = ax) - and the variables of integration in the region

8 are considered to vary between

0 <t £ x-kz

o=y - g\[(x - )% - 1% < §y+%\ﬂx-§)2-k2z2=nl

(3.9)
Where N and N are as defined previocusly.

Considering f in equation (3.1) a constant and teking into account
equation (5.5) » We obtain the fundamental formuls for the velocity poten-
tial ¢y specified by the basic steady motion of the wing

dq dnde
° o B 20 \/(x - £)2 - ¥y - )2 - ¥252

8(x,y,2)

(3.10)

Formula (3.10) contains, as specisl cases, the results of Prandtl
(ref. 3), Ackeret (ref. 23), Schlichting (ref. 4) when the wing surface
is a plane and when the leading edge 1s a straight line perpendicular to
the free stream.
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L. HARMONIC OSCILIATIONS OF A WING

1. Let us turn to the case when the additional motions of the wing
are harmonic oscillations, i.e., on the wing equation (1.6) is given as

_:_ﬁ_ - Rp. Al(x,y)ei[wt + a(x,Yﬂ _

Z

R.P..Az(x,y)eimt (%.1)

where Ag(x,y) defines the amplitude and initial phase of the oscillations.

Using the obvious relation el® 4+ e-18 = 2 cos 6 and equation (3.5), the
basic formula for the velocity potential (3.1) is represented as

-pg 2 2 2 22
oleyee) --tex [ ] E%i] rorh 097 angt (h.2)
2=0

8(x,y,%) va - 8)2 2By - )2 - 122
where
V=)
A=
u2 - g2
and
B = - dou
ue - al

Keeping the second inequality of eguation (3.9) in mind, let us
compute the inner Integral after which we obtain a solution of the prob-
lem for a wing of infinite span

~kz |3y
- _ 1 .Bx P - 2 22]
¢1(x,z,t) =-xe \jgx — z— e ngo[é V&x - 8)° - x5z | at

(4.3)

where IO 18 the Bessel function of zero order.

By means of equation (4.3) the veloclty potential may be computed at
those points of the x,z-plane for which the interval of integration on
the Ox-axis does not extend beyond the wing, il.e., at those points of the
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X,z-plane not affected by the vortices tralling from the wing because
d .
the function S?l is given only on the wing. In order to compute the
z

velocity potential at any point of the x,z~plane by equation (k.3) it is
o
necessary to determine S—l, using equstion (1.8), everywhere on the
b4
Ox~axils outside the wing.

Let us express, by equation (k.3), the veloclty potential 51 for
sny points lying on the Ox~axis outside the wing, which, according to

equation (1.8), equals on the Ox-axls everywhere outside the wing

- -1

P, (x,t) = R.P. cpl(z)e"(K ) (k.k)
where

1w
Ve

and 1 is the abscissa of the trailing edge. Then we cobtain the integral
equation

X1 - - (30 -
f ;-L e"ﬂglo{?\(x - §)}d§ = -ko, e px -f =L e BE'IO[K(X ~ E)} ag
1 19% |z=0 o |92 z=0

(%.5)
3¢l
which S——- satisfies on the Ox-axis outside the wing. In reference 5,
z
we solved such an integral equation. The inversion of equation (k.5) is

3y -px _ dF¥(x) J‘x { } dg
{g}koe == * A . P(E)I; Nx - &) —

where F¥ denotes the right side of equation (h.5), the known function,
and where 1I; 1s tThe Bessel fuaction of first order.

(k.6)

Therefore, keeping equation (4.6) in mind, we can calculate the
velocity potential at any point of the x,z-plane by equation (k.3).
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The problem considered in this section was solved and explalned
in reference 5 from another point of view.

5. INFLUENCE OF THE TIP EFFECT

1. To calculate the veloclty potential according to equation (5.1)
and also through equation (3.10) or (4.2) for those points M(x,y,z) of
space for which the region of integration 8 extends outside the limits
of the wing surface, it is necessary to determine the normal velocity

3
component sfl everywhere in the region of Iintegration S from the
z

boundary conditions of the problem on the 2z = O plane.

Let us consider the case when the reglon of integration S Iinter-
sects the wing surface and the reglon 23 lying outside the wing and
outside the region of the vortex system from the wing. Region 23
(fig. 6) is part of the reglon Z, defined sbove. That is, let us con~
sider the case when the wing tipe - the arcs ED and E'D' of the wing

contour - act on the point M(x,y,z) or so to speak, the Influence of
the "tip effect" and not the influence of the vortex sheet trailing from

the wing surface.

The point E on the leading edge is defined so that condition (3.7)
is fulfilled to 1ts left and violated to its right. The point E' is
similarly defined. The points D and D' are, respectively, the right-
most and leftmost points on the wing contour as shown in figure 6.

J

Let us construct the integral equation for C(x,y), connected to S_-
z

by relation (3.5), in Zs. .

Let us select the velocity potential ¢ at any point N(x,y,O)
lying in Z; by means of equation (3.1), equal to zero everywhere in I

according to equation (1.12). The regilon of integration S(x,y,0) 1is
divided into two parts, as shown in figure T; the region s(x,y) is
that part of the wing falling in the Mach fore-cone from N(x,y,0), and
the region o{x,y) is that part of 23 lying in the same fore-cone.

According to equation (3.6) C(x,y) is given in s. In o, CEX,Y) is
unknown. We therefore arrive at the integral equation which C(x,y)
satisfies 1n Zgz.

-~
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j] c(e,nK(g,n3x,y;5t)dnde = F(x,y,t) (5.1)

o(x,y)

where the kernmel is

(x - &) 2 L N 2}
f{c+a(§,n)-z2x_ . -u2i£.2 Vix - )2 - ¥B(y - )

Vix - 92 - 1By - )2

+

K = (&,n;x,y,%) =

f{c + a(g,n) - %2%%21* ari—&é\/(x - 82 - ¥¥(y - n)a}

(5.2)
Vx - 02 - Bly - 02 -
and the known function
Flx,y3t) = 2= /f Ay (e, MK(E, n3x,y;t)dnde (5.3)
7 _
8 x,y)
If the characteristic coordinates are introduced
X =X - % - Xy - y0), ¥ = % ~ %5 + X(y - y0), 2, = kz
(5.4)

(where =xo eand yy may be any numbers) then integral equation (5.1) is
simplified and in some cases this integral equation is easily inverted
ag will be shown below.

6. SOLUTION OF THE INTEGRAL EQUATION FOR A HARMONICALLY OSCILLATING WING

1. If the additional motions of the wing are harmonic oscillations,

i.e., the condition on the wing is given in the form of (h.l), then
equation (5.1) becomes

2 2 2
ﬁ JORY coa [ ix - 07 - ¥ - 7] anat = Flx,y) (6.1)
o(x,3) \(x - 812 - ¥2(y - )2 o
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o9, -
where the function 8(x,¥) ={§;;}Z=Oe_ﬁx in ¢ and where the known
function is ) -
2 2 2
F(x,7) = - ff age,m eosln Ve = 02 - B - Bl o 60

V.(x-é) - X (y - 1)

s(x,y)

where A(x,y)

B@l -Bx
—_— e
dz lz=0 " in s. In order to solve this integral

equation we introduce the charascteristic coordinates X5 Y5 % with
origin at "O" by means of the formule

X =x-ky, ¥y =x+ky, 2z =kz (6.3)

In the new coordinates the veariables of lntegration in o will vary
between the limits

< < < <. ”
b Sx, ¥E)EnEn (6.1)

where yy = Y(x1) 1s the equation of the wing tlp - the arc ED of
the wing contour - in the transformed coordinates, and g is the

sbsclesa of E defined in section 5 in these ssme coordinates (fig. 8).
Equation (6.1) 1s transformed to

XL PV cos[k“(xl - El)(YQLj ﬂl)] - »
fxE f\v(ﬁl)el G ™) /(= - 80 - ™) T 2?5)
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where the function

%0 B (x14771)
81 (x1,¥1) = {-a-—]:} e 2
Z3,
2q=0

and where the known function is

cos[ A i = E1)(v1 - m)]

Fy(x,7) = - ff Aq(&1,m1) dny 4ag;
8(x1,71) K= - &) (v - )
B (x1+y1)
P 1 "B
1L =1 e
% z1=0 (6.6)
Bcpl

Let us note that the normal veloclty of the perturbed flow —=
z
1
is related to 39y [dzy by

% _, %
oz dzq

For brevity, the index "1" will be left off the independent veriable
everywhere from now on,

2. Let us look for a solution of eguation (6.5) in the form of the
power serles

o0

0Ge,y3N) =Y G (,y) 22 (6.7)
n=0

TInto both sides of equation (6.5) let us introduce

cos E\\/(x - ENy - R)J = Z:; %3%—1: (x - &%y - M A (6.9)
= t
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Keeping the absolute convergence of equations (6.7) and (6.8) in
mind, we mltiply them term by term with the result

0 (&,n )eos [A /(x -t) v - ﬂ)]
- S ,2n [ -
=2 % }g ECER)E k)], [(x=8) 7 - ]2 ey (s,m) (6.9)

Substitubing equations (6.7), (6.8) and (6.9) into equation (6.5)
the latter becomes

X Y o ..k_&
2 _l)n-k ) i n >
;cé ﬂf(fﬁ) g k;:O [z(n m— 6o (8, [(x - ) (v - )] dn at
n....J_'
JA('E"")Z'(—L“K&[("" £) (y-”).] (6.10)

S(x:y)

Taking into account the uniform convergence of the series in both
sides of equation (6.10) with respect to the varisbles & and 7 we
integrate term by term

© k=n nk-l
2n ..1) o
}n-?—o A z_:o [2(n - k)] ff Bop (£57) [(X -8 (v - Tl)] dn das
xp ¥(£)
) on g‘—l)n+l n_%
- g A (2n)! I/ A, [(x - E)(y - n)] " an ae (6.11)

S(X:Y)
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In equation (6.11) equating coefficients in identical powers of A
we obtain the integral equation which the functions 85, (x,¥) satisty

j;E ﬁ(g) et ey = Fal) (6.22)
where
Folx,y) = £ (x,5) + Z:n'l fﬁ(x,y) (6.13)
k=0

where, in its Turn,

1
N~
£ (x,7) =_(:1L_)f_fff ff A, [(x - &)y - ] %an ae (6.14)
(an). s(x,y)
and
(__l)n—k-i-l n-k-

i _ Xy - _ 2
£alx,y) = m »/;Eﬁ(ﬂ 32R(§:’]) [(x §)(y ﬂ)] dn dg

(6.15)

from which the functions f% are defined for kxS0 and n > Q. Let
Us note that the right side Fn(x,5) of equation (6.12) depends , for
8o, on the coefficients 8o but only for k = 0,1,2,4e.,0-1, There-
fore, if we £ind 6, 82, Oy,ean, ®2(n-1)> then F.(x,¥) 1is a known
function in the equatlion which the coefficient O2n in the genersl term

of series equation (6.7) satisfies. For n=0 +he Tight side in equa-
tion (6.12)

Fo (%,7) = £ (x,7) = - /f A(g’n)/& ‘:‘)‘(;5 = (6.19)

S(X;Y)
is a known function of x end y,

Let us solve equation (6.12) for ean(x,y).
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The two dimensional integral equation (6.12) is equivalent to the
two homogeneous integral equations

¥
f - f%i%l at = Fo(x,y) (6.17)

Xg X -

and

¥
JF ean(g,ﬂ) %
dn = @ (gJY) (6.18)
¥(g) T—— e 2n |

each of which reduces tc an Abel equation.

Using the inversion formula of the Abel integral equation and
observing that for any n functions F,(xg,y) = O hence the solution of

equation (6.17) for the fumction 6%, (x,y) is

65 (x,¥) = f *x §<§,y) at (6.19)
fx -

Let us turn to equation (6.18). We denote the parameter £ by x,
and sgein using the inversion formuls for the Abel eqpation keeping
in mind thet according to equation (6.19) the right side &5 x,\y(xﬁ of
equation $6 18) for y = ¥(x) is different from zero, the solution of
equation (6.18) for 65, is

GenE;,V(xﬂ L1 e*gnq(x;ﬂ)
= 6.
O (%,) e j; o T an (6.20)

Subetituting in equation (6.20) in place of ox (X,Y) its value from

equation (6.19) we obtain the solution of equation (6 12) in the following
form:

1

£,¥(¢E)
Bon (%,7) --—z-ﬁ__&-ﬁ_) fxE 33<£T—E ]ag +

1 X py ann(ém) ay at (6.21
X .21)
“2“[%];(::) Kx - &)y - n)
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Thus, according to equation (6.21), we can evaluate successlvely,
the coefficients 6p, 85, 6y;.es, 8oy, ete.

Formula (6.21) shows that all the coefficients (n=0,1,2,...) for

v = ¥(x), i.e., on the wing tip ED, become infinite as R-Y2 where R
is the distance of the point (x,y) from ED. Therefore, the velocity
of the perturbed stream becomes infinite as the specified order on the
wing tips, approaching from outside the wing.

It is possible to represent the inversion (6.21) of (6.12) as

1 P W, 6.22
2n (5] %2 3xdy LE HX) (- 80G-m @ (62

which can be confirmed without difficulty by direet dlfferentistion with
respect to the parameter.

Therefore, the solutions of integral equation (6.5) are constructed

in the form of the sbsolutely convergent series (6.7) for any velue of
the parameter A. :

The coefficients eén(x,y) are expanded In the series
00
o' (x,350) = ¥ 6} (x,3) A (6.23)
n=0

do _B(X+Y)
We find the function 6'(x,y) = {—l e 2 in zg
Z } z=0

(£ig. 6) lylng off the wing to the left, from equations (6.21) or (6.22)
by replacing in the latter the function ¥(x) by ¥,(x) (where

¥ = ¥p(x) 1is the equation of the arc E'D' of the wing comtour -
the left wing tip) and interchange the role of the coordinates.
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3. Let us consider a wing of small span. Let fhe characteristic
cones from Ej and El' intersect the wing as shown in figure 9. The

points B, and Ei' are defined Just as are E and E in section 5.
: 1 1 1

Let us divide the x,y-plane where the.medium is berturbed into the
regions Sg, Sy, 82, - .+ -, 5ps

The region Sp 1s the M-shaped reglon lying within the character-
1stic aft-cones from En end E,' (or within one of them) and outside
the cheracteristic aft-cones from Ep4; and Epyy'. In its turn, we
divide the part of the x,y-plaene lying to the right and left of the wing
into the strips o1, Op, . « -5 Op, - - - and o'y, @', - . o,

', . . ., respectively. The strip ¢, 1lies within the characteristic

On',
aft-cone from En. Therefore, o, and o,' are the parts of S, lying

respectively to the right and to the left of the wing.

Let us return to the fundamental formule for the velocity potential,
equation (4.2), which is in the characteristic coordinates

@1(X:Y:Z,t) =

g{&+n) : g
S I {Eﬂi} R N R
3z J,.0 V( - &)( 2 "
X y-n) -z
(6.24)

"
o
8(x,y,2)

In order to compute the velocity potential by means of this formula
in those parts of the space (or, in particular, on the wing surface) for
which the reglon of integration 8(x,y,z) intersects the region S, of

3 _piﬁiil
le 2 outside the

the x,y-plane, we must first determine —=
-4

wing in the strips U199 Ogs o o oy Op, and o', Op'y o « oy Op's. .

regpectively.

.2
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8 (xty)

Let us denote —=e 2 inthe 0y, O

. ., GC
2 » Sn
z

S'trips by 6, 9(2)’ 6(5)’ « o oy e(n)l s e a-n-d in Ul', 0'2', e s ey

oty .o by 6, o)L e
Let us construct the integral equation for 6(2) .
Let us express the velocity potential at the point N(x,y,O) in o0s

by formula (6.24) which 1s equal to zero everywhere In the strips o3,
op, - - . Op (correspondingly in ay', op', : . . a,').

Tet us divide the region of integration into the three parts
S=8+ 0+ o’l'* as shown in figure 10.

_B.QciL)
The function —Le 2 = AMx,y) 1is given in s(x,y) on the
oz _B(Xﬂr)
wing. In o;'#(x,y) of oy', the function ~le 2 = 0'(x,y) 1is

dz
determined by the solution of equation (6.23).

(x+y)

1 P

In o{x,y) we denote 5—e
z

the integral equation satisfied by 9(2)

by o(2) (x,y). Then we arrive at

j:/ 9(2)(§,ﬂ) COBD\/(';- E)(y - Tl)J dn d¢ = F(g)(x,y) (6.25)

o(,¥) ;(x - &)@y - )
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where the limits of integration are bounded by =xp = g s x and
¥(t) 1Sy and the known function F(2) 15 defined as

#2) (x,3) = - jf ate,my S2MG - O - ] o 4 -

sCny) fx - E)(y - n)
ff ore,m) S8 - G - Mg ar (6,26
s fx ~ &) - 1)

We look for the solution of integral equation (6.25) in the form of
the power series

(2 (x,3) = 3o (D (x,y) N0 (6.27)
=0 2n

Moreover, by reasoning similerly to the preceding section we arrive

at an integral equation for the coefficient eéﬁ) in the genersl term
of series (6.27)

Jézggzg)eéﬁ) (E,U)/( an 8¢ = Féi)(x,y) (6.28)

x - E)(y - n)
where
F1(1 )(x,.v) = Fn(x,y) + ‘L—_ f(z)k (x,v) (6.29)
where, in its turn,
22V (x,y) = (@J("l)in:k:]' /f (B[ - 8 - T1)] -3 dn at

(6.30)
Equation (6.28) differs from equation (6.12) only in the form of the

FéE) function on the right side. Taking into account the condition on
the boundary F(z)(xE,Y) =0 for any n=0, 1, 2, « « « +the solution of

(6.28) for Bgi) 1s obtained by using the solution (6.21) or (6.22) of

(6.12) as a final formula if F,(2) replaces Fp in the latter. The
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function Fn(a) (X,Y) depends on the coefficient ng(a) where k=0,
1, 2, « « +, n~-1. Therefore, just as in the previous section, if the

eak(e) for k= 0,1,2, . . ., n-1 are already found, then F, (2) in the
right side of (6.28) is a known quantity. Therefore, the functions
90(2), 62(2), o . oy 92[1(2), +» « « may be found successively.

Let us note thet Fpl2), and therefore the coefficient 6pn(2),
depends only on the first n + 1 coefficlents 90' s 82', ¢ ¢ ., Bon!
of thé series expansion of

(x+y)
e -f—===
e’(x)y) = ﬂ' e 2
dz
in crl'.

Reasoning in the same maoner, we msy find the velues of 8(3),
e("‘-) 3 o e ey e(N) s o o in 0'3, %, s e oy GN, « o o (COI‘I‘eBpondin@.y
91(3), et(ll'), I et(N), « .. in o', 0.2!; L. UN')'

Therefore, the velociby potential can be computed by equation (6.24)
st every point M(x,¥y,z) of the space for which the region S(x,y,z)
intersects any number of strips oy or oy'. T

All the results hold for the cese when the wing tips are not given
by one equation y = ¥(x) but consist of curves given by the equations
y=%(x) k=1,2, .. .m. The seme cbservation applies to the

leading edges E'E (or ElEl') of the wing. Therefore, in our problem
the wing contour may be piecewise smooth.

If the frequency of oscillation o of the wing be put equal to zero
then the coefficients g, 60(2), . v ey e()(N). « o coincide with the

velues of the derivatives Opg/dz in the strips o7, Op, - - ., Oy, -«
respectively, for the steady motion of a wing when the streamline condi-
tion (1.6) on the wing is given in the form

*9

—2 = Ay (x,
e ]_(Xy)
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7. INFLUENCE OF THE VORTEX SYSTEM FROM THE WING FOR A HARMONICALLY
OSCILLATING WING

1. Let us consider the case when the region of integration S(x,y,z)
in formula (L4.2) for the velocity potential intersects the vortex sheet
57 @& shown in figure 26(a) (see also fig. 11). That is, let us consider

the case when the trailing edge of the wing - the arc DI' of the wing
contour - or, so to speak, the vortex sheet, acts on the point M(x,y,2z)
of space.

Using condition (1.10) we determine a¢l/az in the region O of
the X,y-plane and shown in figure 11. -

The region § 18 off the wing within the characteristic aft-cone
from D and outside the characteristic cones from T. Therefore,
is affected by the vortices trailing from the edge DI of the wing but
not from D'T'. The region § partially intersects the vortex sheet

Z-.

Let us return to the characteristic coordinates x;, ¥y, 2y which
we introduced earlier by formula (6.3).

As before, for brevlty we omlt the subscript 1 from the independent
variables.

Condition (1.10) fulfilled on %, in the characterlstic coordinates
is

09, 0%, L, (7.1)
ot ox oy

From equation (7.l) it follows that the function

O X4y
Py = q)l(XJY)O:'b)e u 2

remains constant everywhere on the vortex sheet along lines parallel to
the direction of the incoming stream, i.e., along vortex lines from the

wing.
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Since the velocity potential @y = 0 everywhere in the x,y-plane

off the wing surface and the vortex sheet, then it mey be verified that
q{u possesses the specilfiled property everyvwhere In Q.

Let us construct the equation for the function

B

's(x:Y) = 3 1 e 2
2 {z=0

in &.

Let us express ¢, at the arbltrary point N(x,y,0) 1lying in Q

by using the basic formula for the velocity potential (6.24). We divide

the reglon of integration S into three parts, as shown in figure 12,
into s(x,y), o*(x,y) end o(x,y). The regions s and oq,¥% are

parts of the wing surface and Z 3, defined above, respectively, which

fall within the characteristic fore-cone from N(x,y,0). The region o is
the pert of @ in the same cone. The varisbles of integration in ¢
vary between xp S E< x and X(E) 1Sy where xp 1s the abscissa

of D and y = X(x) dis the equation of the arc DI of the wing contour.
The expression obtained for ¢, 1s differentiated in a direction parallel

to the velocity vector of the impinging stream.

Therefore we srrive at the integro-differentisl equation which 9
satisfies in Q

d (Y a(e,m) cosAf(x - &)@y - 1)1 an ag +
Bx,[:;Dj;(ﬁ) )/GE -~ £)(y - n)

2 M=V age,m el - G -1 4 g
ayés'/;‘(g) = - &) - )

22 prday 8(E,m) cos A (x - €)(y - n)] an at = o(x,y) (7.2)
(¢) f(x - &)y - n)
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2
where = =i u2 - a and the known function is
uw

o(x,y) = g—i’ "ﬂ A(E,H)Kl(é,ﬂ;x,.V;?\) dn 4ag -

s (x7y')

ﬂ 0(&,M)Ky (&,15%,y;30) dn dg}_

Gl(xJY)
e ﬂ ACE,n)Ky (E,m3%,53N) dn dt -

s(x,y)

PAS ﬂ 8(&,n)Ky (&,n3x,5;2) an ag (7.3)
al(XJY)

vhere Ky (&,n; x,y;N) = costKx - 8 - 0] and the operator
fx - &)y - n)

9 = 3. + -a—. The function 6 1s determined from equation (6.7) of the
oL dx Oy

preceding section.

2, We will look for a solution of equstion (7.2) in the form of the
power series

0

-8(x,y;7\) = Z '82]3_(XJY) G (7.4)
n=0

Keeping in mind the absolute convergence of equation (7.}) and using
the expansion (6.8) for the cosine we obtain

3(&,n3N) cos[Af(x - £)(y - m)] =
k=n (_l)n-k

—eay— (M T (e, [(x - &)y - n)]n-k .
g g@(n_kﬂ! o (E,m) [ y - )] (7.5)
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Substituting equation (7.5), (6.8), and (6.9) into eguation (7.2),
the latbter becomes

k=n

o n-k nek- =
5@}.{.]]; xanz—ﬁ:y———ﬂgk&,n)[(x- )@y - ) 2 an ae +
(s

—2@-n]

x k=n n-k 1
2 ooy (DT YO, Laaal-
S ﬂmz 1S EC L 3oxc(£,m) [(x - E)(y n)] an at +

N

© k=n k-
Y \2(n+1) Y ___(:_3:)__.]_t 3oy (€, [(x - E)(v - e 2 an as
n=0. :

© k=n n-letl oL
0 2n (-1) n 5
A X - T. g, - £ -
= f*go Zk;o o o 0, (8, [(x - )7 1) an at +

s n=0 (zn)f
© k=n n-k+l k- x
K I/E A2(m1) Z é;é}——k')-]-,‘ egk(é,ﬂ)[(x - 8 - 'fl)]n 3 an at
o; n=0 k=0 - * '

(7.6)

Taking into account the uniform convergence of the series with
respect to & and 7 in both sides of equation (7.6), we integrate it
term by term. Then, keeping in mind, the uniform convergence of the
obtained series with respect to x and ¥ which is also maintained after
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differentiation, we differentlate the specified series term by term with
respect to x and y. AfYer these operations on both sides of the
obtained equation we equate coefficients in ldentical powers of A. There-
fore we arrive at the integro-differential equation which the coefficlents

of equation (T.4t) satisfy

R A (&,m) o d¢ +
BXf f(&) - V(= - 8)(r - 1)

XD X

) fx dn at
oy

_
don(Eyn) =on(x,y)  (7.7)
¥p -/;<(§) & fx - &)y - n) my

where

™ o as
(x,y) = , A(E,n)
Paly (En) oL “/‘7 (x - €Y(y - 1)

n+l
[‘2%{3"::)]‘ ff A, - 06 -1 an a +

(_l)n-k+l

k=n-1

n-k . N 1
lﬁ_—ﬂj_g s ﬂ ook (&,1) [(x - &)Yy - Tl)] k-3 an at +
0'1*

k=n-1 n-k+1 n-k- _

E é&)___k)_]_ = ff 21i(g,n)[(x - §)(y - n)] 2 an ae
k=0

(7.8)
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in which the last sum and also the terms in pu are defined for n>0.

Let us note that the right side, ¢,, of equation (7.7) for 4o,
contains terms with coefficients do, but only for k=0, 1, 2, . . .,
n-1,

Let us transform equation (7.7). We integrate by parts with respect
to & +the first integral on the left side of equation (7.7), the second
by psrts wilth respect to 1, afterward we differentiate with respect to
the parsmeters x and ¥y, respectively. Equation (7. T) becomes

fxfy ﬁgng(é,'ﬂ) + 'Bgnn(é;ﬂ) o dt = 0, %(x,y) 7 .9)
h = 0, %(x, .
X)) \x-e -

where

*Sgn(xp; 71)

==l
x - xpJx(xp) Yy - 1
l: \/( egn[é,x(ﬁ)] {d:lcég) ) 1} as + o (x,)

X - §) vy - X(é)] (7.10)

Let us note that the flrst term in equation (T 10) of the right side
of equation (7.9) becomes infinite for X = xpe

*
Qn (x:y) = -

Let us return to expression (7.8) for ¢, and separate out of it

the terms corresponding to the value kX = n in the first sum ~ the compo-
nent

0, (£51)

ffl/(x-g)(y-n) e

We integrate this integral by parts with respect to & keeping in
mind tha:l: the limits of integration in oy* are xp S £ S xy and

¥(E) = | < y eand that ean(xE,y) = 0., Then we differentiste with respect
to x
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Y ean(g n)

. N
ix - W(X'D) VY -1 a§ ¥(&) Jy -1
(7.11)

Let us subject the desired function 4 in equation (7.2) to = sup-
plementary condition,

Let us assume that at the trailing edges - the arc DT (or D'T',

respectively) of the wing contour - and on the straight line DD¥
(figs. 11 and 12) - the intersection of the characteristic aft-cone from D

with the 2z=0 plane (correspondingly the line D'Dy1¥) - the velocity of
the perturbed flow, and therefore the function 9§, is 8 continuous func-
tion, then the conditions are fulfilled

'S[x:X(x)] = A[?cJX(x)] (7-12)

8[xp,5] = [xp,] _ (7.13)

These conditions are analogous to the Joukowsky condition for flow around
a wing Dby an incompressible fluld. From equation (7.13) follows

l s ‘Szn(xD,Tl) 'Bgn(xD)n)

Y
an = 1
JJ?— *p JX(XD) m— V.x ~ Xp ‘/ﬂ:(xD) V.y -1

since X(xp) = ¥(xp).

an  (7.14)

Substituting equations (7.11) and (7.14) in equation (7.10), the
latter becomes

(7.15)

o *(x y) =fx ‘an[g:x(g)] {M ~1lae #
: xp fix - &)y - x(e]

X vy 9 (E;Tl)
L o f en anide + o,' (x
NS —_— »¥)
‘/J:D fx - & 98 | Jy(e) V.y-ﬂ :
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wWhere

Qnt = °Il - R (7.16)

For n = 0, the right side in equation (7.9) is a known function of
x and ¥ ' :

3ale, x(8)] {dX(E) }
dn* = - 1¢dt +
° /’; i - ey - x(8)] at

fxE 1. fy 8g(&,1) dn}dé _
X % - £ Of v(¢) v -

3 agat . 3 dn 4t
2 A(g,n) -2 eolE,1)
oL fs Ax - &)y - m) aYUl/,: ° fx - £)(y - m)

(7.17)
Let us solve equation (7.9) for Hopy + donyre

The two-dimensionsl integrsl equation (7.9) is equivalent to two
homogeneous equatlons

j;x 35,%(&,v) dt = op*(x,y) ' (7.18)

SVEED)

)
I 2t (8 * ooy (80) )y ey 1y (7.19)
[ _

(&) fvy -

and

each of which reduces to an Abel equation. Using the Abel inversion
formule we f£ind the solutions of equations (7.18) and (7.19) as
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6211*(XJY) = L M + % x ‘Dng*(g:y) ag
. * ly - Xny D l’x ~ g"'
(7.20)
and
don ¥[8, 4E)] 7o 8, *(E,)
8ot (8,7) + P (E,y) = & 2 L1 —_ N
. = T X " fx(g) Nl
(7.21)

Substituting equation (7.20) into eguation (7.21), first replacing
in the latter by x, we obtain the solution of equation (7.9) as

Qn*[xD) X(x)1

Vx - xD‘/y - x(x)

3

62nx<x)y) + 'Bgny(xly) = ;%2'

11 fx ¢n§*[g,x(x)] i s
2% Vs et

Y O *(xp,n)

2 (x) fyon

fo
72 Jx

D

an +

fy _Onen (80 e
X (x) fx - )y - m)

(7.22)
o 1
Integrating equation (T7.22) along the straight line parallel to the
free-stream between the limits of N(x,¥,0) and N(x,y,0) we find the
formule determining 9, in the general form of equation (7.4)
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*[ 2, x(x;)
ean(x;Y) = 19211(555:?') r & fx tn [XD - x_l] dxy -+

= Jx \fxl - xD'l/xl + 3 - x = %x(xp)

i f;f;xl O[5 X0 ) ot axy

2
Pl D xl-QS/xl-l-y—x—x(xl)

1 fx fxl+y—x an*(xp,'fl) dn dxy N

’ra X X(Xl) Vxl - Xp X.l +y-~X -1

—fo fxl fx1+y—x Qngn*(gyn) an af ax
2J% 1
x-Vx Yxp Yx(x) \/xl-g‘/xl-l-y-x—n

(7.23)
If in equation (7.23) the coordinates X and ¥ are taken as solu-
tions of F-X+x-~-y=0 and ¥ - X(X) =0 and the value of Ion(%,¥)

is determined from condition (7.12) on the trailing edge , then we find
9oy, on the vortex sheet.

If in the same formula, the coordinates X and ¥ are set equal to
X=%x and F=y -3+ xp and the value of GEn(J?,Y) is determined

from equation (7.13) on the line x = ¥p, then we find 45, oubside the
vortex sheet in the region it affects.

Thus, through equation (7.2%) , We can compute successively the coef-
ficients '80, '82, Y . ey 'ezn, ¢ e e

Therefore, the solution of equation (7.2) is constructed as the
absolutely convergent series (7.4t) for any value of A.

The coefficients 4J,,' are expsnded in the series

3 (x,¥5N) = }: 3op* (x,7) 220 (7.24)
n=0
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x+y
-pEY
The function 4' = gfi e 2
z

equation (7.23) if the function X o(x) replaces x(x) in it (where
¥y = Xpo(x) is the equation of D'T' of the wing contour) and we inter-

in Q' (fig. 11) mey be computed through

change the role of the coordinstes.

3. Let us consider the general case of the flow over an oscillating
wing by & supersonlc stream. Iet the characteristic aft-cones from Eq

and Eq' and D; and D,' intersect the wing as 'shown in figure 13.
Then E; (correspondingly E,'), as shown sbove, are defined so that to

the left on the leading édge equation (5.7) ié satisfied and to the right
it is not. The points Dy and Dl' are, respectively, the most right

and. left points on the wing plan form. B "

The space of the considered wing plan form as transformed by equa-
tion (5.4) is illustrated in figure 1k.

Let us divide the x,y-plane where the medium is perturbed into a
serles of regions: <The reglons considered in the preceding section,

Sg, 835 + + «5y SBp, - . .3 By and the reglons A, Doy o o oy

Ly, « + « . The region Sy 1s the M-shaped region bounded downstream
by the intersection of the characteristic cones from Dl' and Dp' with
the = 0 plane. In the 2z = 0 plane, these lines are the upper
bounds of the region of 1nfluence of the tralling vortex sheet.

The region &y 15 M-shaped lying between the characteristic cones
from Dp, Dn'; Dpg1s Dpgy'- We divide, in its turn, the part of the

X,y-plane lying to the right and left of the wing, respectively, into

the strips op, op, . . Ops « + +» qN defined asbove and into 8,
Bos « + +y By « .+ and dnto o1', o', . . ., o', . .., oy
defined above and 8;', &', . . ., 8&,', . . . correspondingly. The

strip Sn. is that part of 4, to the right and an' 1s the corresponding
part of 4, to the left of the wing. It is easy to see that the region
defined at the beginning of this section is in 8. ' '

In order to solve completely the problem of the flow over the wing
shown in figures 13 and 14, the derivative 3$l/az must be determined
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in 81, 62, « o oy Sn, « + « &and in Sll, 52', s ey 61’1" e e
. _B(X+y)
Let us denote the function S e 2 py 9, 8(2), 6(3), “ e,
z
N S 1 (@, . () . in the 81, B2, . . .,
ny - - . anmd B1', B2', . . ., Bp', . . . strips, respectively.

Applying equation (6.24) for the velocity potential we comstruct ¢
for any point N(x,y,0) in 8o.

We divide the reglon of integration S which depends on the form of

1 _ﬁx_-{-y_ .

the function S e 2 into the following: S =8 + o¥ + o *' + 5% + g,
z

as shown in figure 15. This function is given in s. It was determined
in o¥ and o'¥ in the preceding section by the solutlons of equa-
tions (6.7), (6.23), (6.27), etc. In s* it is determined by the solu-

s
tion of equation (7.24). We denote LT 4n g by 3(2),
b4

Using the boundary conditions (1.10) end (1.12) we arrive at the integro-

differential equation which 6(2) satlisfles and which differs from equa-
tion (7.2) only in the form of the right side. On the one hand the right

side depends on the solutions 6, 9(2), c ey S(N), ef, e'(2), ..
6'(N) and on the other hand on the solutions 48'. We construct #(2) in

the form of a power series in the parameter A.

Requiring the fulfilliment of equations (7.12) and (7.13) for 3(2)

| 2
we obtain for the coefficlents eo( ) (2, L, e(®, L.

an expansion in series of 8(2) of equations of the form (7.9) which
differ from each other in the form of the right side.

The right side in the equation for the coefficlent 9o 2) in the
general term of the series for 6(2) depends on the first n+l coef-
ficlents of the expansion of e(i) and B'(i) where 1 ‘takes all values
less than or equal to N, and on the first n coefficients 60(2),
ge(g), e vy 3x(2) (1=0, 1, 2, . . ., n-1) of the series expansion of
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the desired function 6(2). Therefore, it is possible to find succes-

elvely the coefficients ﬂo(2), 82(2), . s ey 82n(2) using the solu-~

tion (7.22) of (7.9) as a final formula if there is put in the latter,
instead of 0,%, right sides in the equations of the form of (7.9) for

the respective coeffilclents of the expansion of 62n(2)'

By the same reasoning, values may be found of 6{3), a(“), . o e
'B(k)’ L) . . in 53, 5)_(_, . . LX) Sk,

Therefore the veloclty potentisl may be computed by equation (6.24)
at any point of the space perturbed by the motion of the wing shown in
figures 13 and 1l4. In particular, the veloclty potentisl may be eval-
uated at any polint of the wing surface.

All the results are valid ﬁhen the contour of the wing is plecewise
smooth.

If the frequency of the osclllations of the wing, w, be put equal

to zero, then the coeffieients 4, 80(2), o« o ooy ﬂo(k), o« « » coin-
cide, respectively, with the values of O@gfdz in By, Bp, o « o
By, o » o for steady motion when the streamline condition (1.6) is glven

on the wing as O¢/dz = Aq(x,y).

We apply the proposed method of determining 3¢l/5z for the oscil-

lating motion of a wing by constructing an integral equation, to wings
of completely arbiltrary plan form. For example, the wing contour may not
be cambered but msy bave the shape shown in figures 18, 24, ete,

In all cases, the part of the x,y-plane where qu/az mist be deter-

mined should be dlvided into the corresponding characterilstlc reglons.
Then successively passing downstream from one region to another, construct
the integral and integro-~differential equatlone using the boundary condi-
tions on the x,y-plane. The solutlon of these equations for Bql/az or

for functions relsted to Bqd/Bz 1s obtalned as a series in even powers

of the parameter A, which defines the frequency of oscillation, The
whole problem of determining the coefficients of the expansion reduces to
a double integral equation in each characteristic region. EKach of the
equations after trensformation sppears 1o be an equation of the same type
which 1is solved by mesns of a double application of the inversion formula
for the Abel integral equation. The form of the wing contour is the limits
of integration. The influence on the consldered reglon, of determining
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the desired function in the preceding upstream characteristic region, is
reflected in the form of the functlion in the right side of the integral
equaetions.

8. FLOW AROUND AN OSCITIATING WING OF NON-ZERO THICKNESS

1. Let us consider the motlon of a thin wing at a small angle of
attack (fig. 15a). :

Let the wing be moving forwerd in & stralght line with the constant
supersonic velocity u. ILet an additional small oscillating motion be
superposed. on the basic motion of the wing so that the wing surface may
be deformed. ’

The normal veloclty component on the upper surface of the wing will
be considered glven by

Ony = Agulx,y) + R.B. Agu(x,y)ei“’t (8.1)

and on the lower surface by

last
ont = AOZ(X’Y) + R.P. Ay, (x,7)e (8.2)

where AOu_ and AO?, define the wing surfaces and

Ay, = Alu(x,y)ei%(xr:)’) and Ay = Alz(x,y)eia'l (x,5)  define the ampli-

tude and Initial phases of the additional oscillating motion of the wing.
We conslder the funmctions Ag,, A3, and o, given at each point of the

upper surface and AOZ s Alz , and @y given on the lower surface, The
X,¥,2 coordinstes were defined in section 1.

The velocity potential @ is

05(%,¥,2,8) = o(x,¥,2,%) + ¢x(x,7,2,%) (8.3)
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The potential ¢ is specifled by the motion of an osclllating wing
of zero thickness, which creates at each moment an antisymmetric flow with
respect to the x,y-plane (fig. 15b). The potential @y is specified by

the motion of a thin oscilllating wing with a profile symmetric relative
to the x,y-plane. Therefore the motion proceeds in such a menner that at
each moment the wing surface will be symmetric relative to a designated
plane (fig. 15¢). Such a wing creates a symmetric flow and ¢ sabisfles

q)s(x:y)"z':t) = cps(x,y, z,%) (8.4)

Bach of the potentials ¢ and ¢@g is represented, In its turn, by

P=% + P (8.5)

®s = Pog + P15 (8.6)

where @qn and @y correspond to the steady motion of the wing and @
and P15 correspond to the additional motion of the wing.

Let us set up the streamline condition using the representation (8.3)
for the velocity potential.

We transfer the boundary conditions on the wing surface parallel to
the 0z axis onto the projection s of the wing on the x,y-plane

(fig. 1).

Therefore, we obtain the streamline condltions based on equa-
tions (8.1) and (8.2)
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o
_a_zli} =A0u(x,Y) + R.P. A@(X,Y)em (8.7)
z=+0
and
3P, Lost  a
-2 = Agy (%,¥) + R.P. Agy(x,7)e (8.8)
z=-O

which must be satisfied on the upper and lower sides of 3, Trespec-
tively.

Using equations (8.5) and (8.6) we establish boundery conditions
for the desired potentials @g, @3, Pog, and Pjig-

Keeping in mind that on the z=0 plane the normal derlvatives of
the potentials @y and @5 are specified by the symmetry of the flow

over the wing satisfying the condition

{BCPOS} - g , {aq)ls - 0P 5 (8.9)
dz 0 dz 2O dz oz

z=+0 Z==0

We find the boundary conditions for ¢ug and Qy g Which must be satis-
fied on the upper surface ¥ +to be

oz oz

Pl o
{ Os = Iy(%,7), 1s = R.P. T'a(x,y)elet (8.10)
=+0 z=+0

where the functions To and FE are releted to quantities glven on the
wing surface through

( b ) - A ( L) ) ( 3 ) ~ A ( 3
fou )~ Py o) = 220 2y %Y)

PQ(X,Y) =

(8.11)

The conditions to be satisfied by Pog and @, on the lower surface of

Yy are 3
. B
1[52" = - Toley), {=2E = - R Talny)el®(8.12)
Z==0

Z==0
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Since the normal derivetive of the potentisels P and ¢; specified
by the antisymmetric flow over the wing, ofi the 2z=0 plane, satlsfy

{Eﬂ’g} ={é&} ,{3"1&.} {a_ﬁ} (6.13)
92 |540 9z J,0 | 9% Jz=r0 9% {50

the boundary conditions which must be satisfied simuitaneously on the
upper and lower surfaces of I sare

o :
-S-ZQ = Ag(x,y) a—::— = R.P. Ap(x,y)elat (8.1k)

where Ao and A2 are related o quantities given on the wing through

po =Tl il (8.15)

The boundery problems for @ (x,y,2z,t) and cpo(x,y,z) were set up
in section 1 where in the case of a harmonically oscillating wing, equa-

tion (8.14) rather than equstion (1.6) should be teken on the wing. The
solution of these boundary problems 1is contalned in the present work.

Let us formulate the boundary problems for ¢rg and @ug:

I. Find ¢4(x%,y,2,t) satisfying equation (L.4), condition (1.11) on
‘the disturbance wave, condition (8.10) on the plane region ~ and

3
s _ o (8.16)
dz

everywhere in the X,y-plane off X where the medium is perturbed.

IT, Find the function apg(x,y,z) satisfying equation (1.5), condi-
tion (1.11) on the disturbance wave, condition (8.10) in the plane
region Z, and

*os =0 _ (8.17)

oz

everywhere off § 1in the x,y-plane where the medium is perturbed,
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Since the potentials ¢, end @pg are functions which are symmetric

relative to the x,y-plame, it is sufficient to solve the problem for the
upper half-space.,

The solution of boundary problem I is glven by equation (k.2). By
means of this formula it is possible to compute the veloelty poten-
tial ¢y everywhere since in the case of symmetric flow over a wing the

derivative O@;g / dz 1s a glven quantity for any point M(x,y,z) of the
gpace in the region of integration 8(x,y,z). To compute Pg 86 M
according to equation (4.2) the function

3
{_33_-?.} = R.P. Fz(x,y)ei“’t
oz z=+0

acp]

mist be substituted for {———} and integretion is over that part of

z
2=0

the wing within the characteristic cone from M.

The solution of boundsry problem IT as 1s known (refs. 21 and 22) , 1s

d
given by formula (3.10) if the function {-gq-b-} is replaced by
Z |20

BZZSJ[ . = To{x,y) and integration is also over the region defined imme-
z=+0

diately =sbove.

If the wing 1s vibrating'as a rigld body then the functions Ap,; and
Ay, coineide and therefore, to solve the flow problem in this case, it is

sufficient in antisymmetric streams excited by the motion of an oscillating
wing with profile of zero thickness to superpose steady symmetric streams.
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PART IID

To spply the integral equations method explained in Part I of the
present work, let us consider the problem of the flow over thin wings of
finlte span in steady supersonic flow. .

The velocity potentlal ¢g specified by the steady motion of the
wing may be computed through equation (3.10) at those points M(x3,¥1,21)
of the space for which the region of integration S(xl,yl, zl) ; already
known from Pert I, does not extend outside the limits of the wing where -

E is given. -
oz, - -
If 3po/dzy; appears to be unknown at any part of S, then, to use

equation (3.10) in these cases, where it has in the characteristic
coordinates (6.3) the form

9 dn, dg
®o (x1,¥1,21) = - i_ ﬂ {a_jq} 1 %51 _
s(leYl:Z]_) . 21=0 V (xl - gl) (yl - ﬂl) - Zq

(21.1)

and to obtain the effective solution of the problem, it is necessary, first -
of all, to find J3p,/dzy everywhere in S by constructing end solving

an integral equation. ;
1. INFLUENCE OF THE TIP EFFECT FOR STEADY WING MOTION

1. The integral equation (5.1) in the coordinates (6.3) is, for the
steady wing motion

dny dgy

F(xy,¥1) (21.2)
';/(X]_ - &) (yy - M) v

f el(scl:Yl)
U(xl)yl)

3The resulte of Part IT, sections 1, 2, and 3 were completed in
April, 1948 at the Math. Inst. of the Acad. of Sclence, USSR.
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where 8 1is the value of acpo/le on 5z (fig. 6) and where the
known function is

dny afy

G - &) (7 - m)

(21.3)

F(x,v1) = - ﬂ A(E1,M)

8(%y,¥1)

The function A glven on the wing is

3% upo(x,y) _ E{xl NS NS xl} (21.1)

A(xl’yl)"’a_{:'——kl o) e

3
It is easy to see that the veloecity of the perturbed flow —Bq)_o
A

normal to the x,y-plane is related to aqao/azl through

% %
oz 0zq

The regions of integration in ¢ are xi3 <& < x and
¥(ey) < < yy where, as before, ¥y = \Ir(xl) is the equetion of the
wing tip ED in the transformed coordinates and x;j 1s the abscissa
of E 1in ‘the same coordinstes. The regions of :Ln‘begra.tion' for & in
§ ere the same limits Xyp < & < X; and ¥y(&;) < my < ¥(81) where
¥y = W{rl(xl) is +the equation of the leading edge E'E of the wing contour.

Let us note that equation (21.2) may also be cbtalned from equa-
tion (6.5) if the frequency o of the wing oscillastion is set equal to
zero In it,

Let ue delete the index "1" from the independent veriables,

We solve the double integral equation (21.2) with respect to 6, by

means of a repeated application of the inversion formule for Abel's inte-
grel equation.
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We write equation (21.2) as

X 1 ¥
“4;3 - & /x;(g)

8, (&,1)

fy -

¥(&)
an + [‘

() Sy
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A& antae = o

(21.5)

This is an Abel equation with right side ldentically zero, therefore,
the brace equals zeroc for ¢

fy el(x,ﬂ) 4
¥(x) /vy - "

which 1s also an Abel eguation.

= x. Hence, equation (21.5) is equivalent

\/ﬂ¢(X)A{x ) an
W oy

(21.6)

Noting that the right-side of equa-

tion (21.6) is, generally speaking, different from zero for y = ¥(x)
we find the solution using the well-known inversicn formuls for the

Abel equetion

el(x,Y) = '“]"'

be obtalned from the solution

equal to zero.

1

y

1

- My -y *

) f‘“x) A(x,n)
m 1i’]_(x) }/-—-—Tl'

£
TSy

AxNY) antlan (21.7)

1 fllr(X) A
(x)fy - non| Yh(x) ot

Let ue note that the solution 221.7) for the steady motion of a wing msy
6.22) of equation (6.12) for the vibrating
wing if the index n and the frequency of oscillation @ are both set

Carrying out the operstions specified on the right side of equa~

tion (21.7) we find the solution of equation (21.2) to be

*(X).A(X,ﬂ) (¥(x) - n

el(x:y) = -

1

P8

y‘-

.
¥(x ¥

l(x)

y-1

an

(21.8)

-~
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!
In a2 similar mamner, we find the value %’- = 61'(X,Y) in 23,

Z
(rig. 6)

-

Yo (¥) (y) - ¢
ta,y) = -2 =% [ VN, y) L2 ar  (21.9)
ey }& - 1’2(3’5 ‘/;l(y) Y Vx - &

]

The functions x = Tr'l(y) end x = 'fz(y) are, respectively, the equa-
tions of the arce ED &and E'D! of the wing contour solved for x. The

solutions (21.8) and (21.9) show that the velocity of the perturbed stream,
when the arcs ED and E!'D' are approached from off the wing, goes to

_1
infinity as R~ 2 where R is the distance of N(x,y,0) f£rom the points
ED or E'D' (see fig. 7).

, 2. Let us £ind the velocity potential according to equation (21.1) at
the point M(x,y,z) of space for which the region of integration 8
intersects the wing surface T eand the region T3 or 25‘.

The reglon of integration S in equation (21.1) is divided into three
parts: S = 8, + 8, + S5, as shown in figure 16

CPQ(x;y,Z) = - i:‘t j:f A(E,Tl) dn dt

5g+Sp J(x - &Yy - 1)
L dn ag
= 8, (&,7)
& s'lf fx - )y - n) (21..10)

g2
X -
where xp 1s the coordinate of the point A which is the intersection
of the characteristic forecone from M with the side edge ED of the
ving. The equation 1 =y - ZE/x ~ & 1is the equation of the hyperbolsa
in which the aforementioned cone intersects the 2=0 plane., The limits
of region s, are xg St S xp and ¥4 (E) S S y(e).

The limits of region 8; are xp <¢ Sxy and ‘4’(5)5"1 Sy -
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Using equation (21.8), let us evaluate the integral over s; in
equation (21.10)

= 91(5,")) dn a¢
;Zf - 8 - 0
1

~_1 [™a Y-—f#(ﬁ) A, ') \Jy(g) - 7' an at
T Jxphi(g) O EEIGICERL ) V(x - £)(y - n)-z°
(21.11)
we interchange the order of integration of 1n',1
X (8) )
I--2% A(E,n") @’: il - an' ag  (21.12)
" Jci(g) chg) 1 - v(E)(n - n')\/y ol fag -
The result of the inner integration is
2
-z
* o fy %
3
¥e) \,n - y(&)(n -1 )V/y - -1
= (21.13)

-t

X
l/\ir(é)—n'/y-xfg

Putting the value of equation (21.13) into equation (21.12) we obtain

ffA(g,n ) dn & (21.14)
fx - 8y - 1) - 22
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Equating (21.14) and (21.11) we obtain

u[[el(gﬂl) dn 4 = - —BJJA(&,T)) dn 4 -

5y - ) - n) - [ - Oy = n) - =

(21.15)

Therefore, to £ind the velocity potential, on the basls of equa-
tion (21.1), at a point M(x,y,z) projected onto M'(x,y,0) in the
X,y~plene as shown in figure 16, it is sufficlent to integrate over sg

y dn dg
Polx,¥52) = - = A(E,n) (21.16)
z"sfof hx - 8 - n) - 22

The 1imits of region su are ¥;(8) Sn Sy - 22/x-& and

xA.<—_- gﬁ Xp Where Xp is the abscisse of the point of intersec¢tion of

the Mach forecone from M with the leading edge E!'E.

The veloclty potential on the wing surface can be calculated from
equation (21.16) by se'b‘tiné z=0 iIn it and considering the reglon of
integration to be x, SeSx and \yl(g) £ 1Sy because the lines of

intersection of the characteristic forecone from M with the x,y-plane,
in this case, are the lines &€ =x and 1 =y.

In order to compute the velocity potential at points of space , or in
particular, on the surface of the wing for which the region of inte-
gration S intersects similtaneously 2_3 and 23' ; that 1s, at points

of space where there 1s felt the effect of both side edges ED and E!D! R
it is sufficlent to integrate equation (21.1) over the region

g8 =9 ot S & the cross-hatched region in figure 17. Hence the integral
over S e in equation (21.1) must be taken wilth the opposite sign, i.e.,
the plus sign,
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3. Let us consider the wing of more genersl form shown In figure 18.
Let the forward part of the wing have the bresk, the arc EGG'Ey', in the

wing contour which affects the flow Just as do the side edges.

Let us show how to compute the velocity potentisl at all points
M(x,y,2) of the space disturbed by the motion of the wing, which 1s not
affected by the tralling vortex sheet, in particuler, on all points of the
wing surface.

We divide the wing surface into the characteristic regions shown in
figure 18.

If the region of integration S 1in equatlion (21.1) intersects
regions 2, 2', 3 and does not intersect 4, then the velocity potential
may be evaluated by using equation (21. 165 (see figs. 16 and 17).

The simple result which is expressible by eqpation (21..16) does not
hold in the genersl case.

If 8 intersects U4 on the wing, in the curvilinear triangle K'OlK;
then according to equation (21.1) qu/ﬁz must £irst of all be found in
the triangle. -

Let us express, by equetion (21.1), the velocity potential at any
point of K!'04K as equal to zero everywhere outslde the wing and the

vortex sheet from the wing, hence in K'01K. Therefore, we arrive at an

integral equation. of the form of (21.2) for the function
6 *(x,y) = 0¢p/0z 1n K'0;K but with a more complicated known function.,

Applying the Abel inversion formule twice, we arrive et the solution
in the following final form:

By *(x,y) = - ¥(x) A(x,n)\/w(x) "0,

“VY-Wj ¥y (x) ¥y -

4‘2(3’) ACE, 9\ [¥aly) - &

dg
T - *2(3' ¥ (¥) X - £ (21.17)

H

where y = y(x) is the equation of EG, ¥ = ¥1(x) 1is the equation of E'E;
= ﬁé(y) of Ei'G' and x = Eia(y) of ;El'E' - '
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Substituting equations (21.17), (21.8), and (21.9) into equa-
tion (21.1) we obtaln the formula for the veloci'by potential at M which
has the projection M!' shown on figure 18, and for which the region S
intersects U4 on the wing and, therefore, the region K'OlK outside the

W:Lnga.s

XY,2) = = s AlE, dnigg
Po(x,¥,2) = */f (n)ﬂi-g)(y_n)-za
8*(x,y,2)
1 A(E,n) tan-1 Lexe) - ()l - ) - m) - 2] an at +
Pox fx-DG -0 -2 [ve) - 2 ]{& - 0]y - va)]- 2]
for M= - ) - ) - 22 [ - g]{(y - )x - Fetm)]- 22
(21.18)

vwhere v = ¥*(x) and x = ¥*(y) are the equations of GG' of the wing
contour in terms of x and Yy, respectively.

The region S%* is the part of the wing shown cross-hatched in fig-
ure 18. The regions S1* and Sy*¥ are part of S5* and are marked in

the same figure by horizontsl stripes. The regions Sl* and SZ* are
bounded downstream by lines parallel to the coordinate axes passing

through G and G!, The points G and G' are respectively the points
with the largest x and y coordinate on the arc EGG'E,'.

By combining the results of equations (21.1) and (21.18) there is
found in the form of integrals taken over the wing surface, an effective
expression for the velocity potential at points of space for which S in
equetion (21.1) intersects 5 or 6 on the wing and therefore A K'0;K

and =% and ):,3' off the wing.
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2. FLOW OVER WINGS OF SMAIL SPAN

l. Let us asssume that the characteristic cones from E; and El

intersect the wing as shown in figure 19 This occurs, for example,
for small span wings. ’

Let us divide the x,y-plane where the medium is disturbed into the

regions By, S7, - « 5 Sy, -

The region Sp 1is an M—shaped.region lying between the character-
istic cones from Ep and E,' (or in one of them) and Ep4]
and Eps41'. In its turn, we divide the part of the x,y-plane to the
right and left of the wing into the strips oy, dp, . . ., oy,

and oy', ax'y « .., o', .., respectively. The strip o, lies
between the after cones from E, &and E,.j. Therefore, o, 1s that

part of Sy lying to the right of the wing. The coordinates of E
and E' with their indices are shown in figure 19. The strip op' is

gimilerly defined. -

Let the leading edge Ej'E; be given as in part I, section 6, by
the equation y = ¥;(x) and the side edges EiE, ., and E;'E ' by
¥y = ¥(x) and y = yo(x), respectively, or as x = y(y) and x = ¥a(y)
correspondingly.

To compute the velocity potentiasl at M according to equaticn (21.1)

in that part of space (or, in particulsr, on the wing surface) the region
of which intersects Sy of the x,y-plane but not Sp4j, we must first

of all determine Jpo/dz off the wing in Oy, Opy O3y + .+ +5 Op

end also in. oy', o5', _63 R N IR

We construct the integral equation for apo/az in the arbitrary
strip Oy -

Let us express a velocity potential which is equal to zero every-
where off the wilng and outside the region of influence of the wvortex
system from the wing, at N of the Oy strip (fig. 20) according to

the fundemental formula (21.1)
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/f {az} an as =0 (22.1)
0)

SGey, z=0 f(x - £)(y - n)

The limits of integration in § are xq <.§ <x apnd yq < <1 L

For convenience in later writing, we make S a recta.ngle, which is - pos-

sible since the medium shead of the wing is not disturbed and oy |9z
is Zero.

The region S 1s shown In figure 20 bounded by the lines LN
Llo and O L.

Let us den.ote aqb/az by el, 62, s s ey ek, e« & e a-n.d. el',
92', e . ey Gk',

in the respective regions
and C'l‘ »

' : 01y Gps « « vy Gy
0'2,..., O'k,.

In conformance with this new notation we write equation (22.1) as

fx 1 fy Gk(.&,'ﬂ) an + f\y(g) A(§ 1’1) an +
xy (X - F |Jy(e) - Yo(g) ¥y -

dnedg = 0O

i'=Eb2fyi+l ei'(é,‘l'])d \lfg(é) 81 (5:71)
= [T T2
=1 Jyy /y -7 Ve 1 V.Y -7

(22.2)
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Applying the Abel inversion formuls twice to equation (22.2) we f£ingd
& for k22 -

8 (x,¥) = ‘:% . /;,MX) A(x,m) f¥(x)

=1 an +
2(x) y - "l

ife /;ryi+l ei'(x,n)yﬂf(x) -1 o + f‘lfz(X) O-1' (XM ¥(x) - q an

=1 Yy y= Yie 1 y -

(22.3)

Correspondingly, for 0" we obtain

A

Ot (x,y)=- 2 L /:‘I’E(Y) ACe, )20 - & at +
[;x - ¥ao(y) |Y¥(y) x - &

i

Il

k2 gl 0y (8,9) () - & i s ﬁ(y) O (N HE) - E

x -t x - £

X
i=1 ~¥4 ka1

(22.4)
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where the terms in equations (22.3) and (22.4t) containing the summations
are defined only for k 2 3.

If 8y, 65, o « oy 8 7 and therefore, 81', 65", . « ., 6 ;'
are already defined in oy', dof, « « o, Oy 7' then we can compute
6k In ox for any k by means of equation (22.3).

The value of 39;/dz in oy end o7' is determined by solving
equations (21.8) and (21.9).

The value of O@;/dz in 05 is found from equation (22.3) by
putting k = 2:

¥(x)
__i__ 1 f¥(x) - n
62(XJY) =-z m \[:2(:;) A(x,ﬂ) —'—‘—'—y, _— dn +

L. f\lfa(x) fﬂrg(n) ACe,m) /¥ - \[Fan) -t a o

2 - ¥ Jy ) (v - 1) (x - &) fx - T(m)
(22.5)

We find 9qu/dz in oy' in the same wey

Vo (y) \/’ -
% f - A(E,y) -—%(L)—g ae +

92‘(x,y) = - ..]:

T yx - ﬁg(y') v(y) x -~ &
¥(y) p(e) ¥o(v) - e\fu(e) -
_1_2_ 1 ¥) r ale,n) \/vz(y) \/ (€) -n an ae
7= x - () Jx o Je(e) (x - )y - )y - 1 (8)
(22.6)

Thus, step by step we compute 3qy/dz in oy.
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Using the solution of equation (22.3), we now prove the relation

0

oz

o x % /y-za/ x-¢ 3%, dn dat
). &

SR 6} —Z=°1/(X-§)(y-n)—22—

(22.7)

where xl* and x2* are any numbers satisfying ¥ < x2* §xA (xA is

the coordinate of the point A shown in fig. 21), X1 < X% <xy,

For the proof s Wwe write Q in the equivalent form

.
/wcz* v %(g,n) an a
Q = / = +
¥*

20 e -G - - 2

XQ* L/v"y(g) A(g,ﬂ) an dat
¥,

+ ..._
% ) oG - - 2
=k-2 oy oy 8, ' (£,n) an at . X% p(E) 8.1 (€,m) an ag
i:-_-l -/xl* fyi Ax - 8y - n) - 2 fl* Vel fx - 8)(y - m) - 2P

(22.8)
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where 8, in the first of the integrals is replaced by its value
according to equation, (22.3).

Then, we obtain

0--1 f f“’(g) A(E,n' )hr(g) -0 xoant ar -

¥o(8) X = 5

imk-2 XQ*J Yigr 857 (&, ) ¥(E) - nf

1 T* dn' at -
L fxl* v fx ~ & !
¥o(8) 6, . (&,n? )ﬁf(é) -1t
1 f f et k1 I* an' at +
rt x; kel 1/:( - £
fxe* f ¥ atem) anae
x* (8 fx - &)y - 9) - 22
i=k£-2 f in+1 8;*(E,n) dn at
VR fx oG- - AR
x* Alo(E) g 4t an at
f x-1'(€,n) dn (22.9)

%* Vel fx - 6)(y - 1) - 22

where I¥ denotes the integral (21.13) evaluated before. It is easy to
see that all the terms in the right side of equation (22.9) cancel in
peirs. Hence, equation (22.7) is proved.

It is also clear that the following holds

yo* X"— {BCPO] at an -6
f f 32)10 fix - Oy - M) - 2
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vhere yy¥* and yo¥ are sny numbers satlsfying ¥y s yl* < yp @and
vy < 9% S g (yB is the coordinate of B shown in fig. 21).

Using equations (22.3) and (22.4) 1t is possible to prove egua-
tions (22.11) and (22.12) correspondingly

xg* ¥ jaio_} an ag
’/;C]_* “/‘;(5) ‘_

32);0 flx - &)(y - m) - 22

[2%] § .
O ETY P 2 ([ - O - ) - Ply* - we)
=-2 ‘tan £ at dn
* Ll* j;l )[(x - EMy - 1) - 22 T(;" 8 -9 - ZE‘][_‘P’“) - 1]
(22.11)
72

< [
where y* may depend on £ and satisfiles V(x*) < y* = e

fyz* fx* {B&} dn at | - -
n* V() (%)= G- O)F ~ 1) - 22

3 :
_ 2 fYQ*fga(ﬂ) {“522‘ 20 san-1 [(x - &)y - n) - zg]["* - ?2(71)]
T iy (x - &)y - 1) - 22 [(x-x*)(y - n) - za]ﬁg(n) - t]

ag dn

(22.12)

- ] 5
where x* msy depend on 7 and satisfies Ilra(yl*) < x* S x._2%
-1

The relations (22.10) and (22.12) may be obtalned, respectively,

from equations (22.7) and (22.11) if the role of the coordlnstes is inter-
changed in the latter.
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Let us note that the result of a single application of the
Abel inversion formuila to equation (22.2) or directly to equation (22. l)

ylelds
N {3
f % 4 o (22.13)
L 192)z0 vy -1 | -

Interchanging the role of the coordinates in equation (22.13) we obtain
Lz e

°0 L& __o (22.14)
L! {:Bz };=0 x - £

Tt is possible to consider equations (22.13) and (22.14) as rela-~
tlons fulfilled along the characteristic lines IN and LT™' in the
X,y-plane where y and x are, respectively, the coordinastes of N or
N' 1lying off the wing and off the region of influence of the trailing
vortex system (fig. 20). The points N and N' 1ie to the right and
left of the wing, respectively, These relations can be useful for compu~
tations.

2. Let us turn to the fundamental formuls (21.1). Using equations (22.7),
(22.10), (22.11), and (22.12) we obtain, by calculation, the formula
for the velocity potential ¢y at M(x,y,z) for which S intersects

S, for any n>0

Qlx,y,5) = - .L. J——ng——" £ + L ﬂ- Ak, )n &8 %E A, —_— s a1 ‘[T A“Mna
- Do -m -2 Eoe-n-2 “H fe-oc-n-2 2l kne-w-=

.Lb-n S pta(m) E (&, dq - _h-b-»" fyhpl “z(":n) 'k (t,m)0 an ar-
2l dn M) Gnoow o2 &W e he-w-2

—_———— —__—_.__-'— i (22.15)
= .o ¥(t) fx - By -1) - 2 In-2 ;g(‘l) Rx t)(y - n) - = . R

1 f I:'z(ﬁi f"z("A‘l o o(tm)n o a5 - "[_("B)] f'(’h) L
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where the functions ﬂl and. 92 are deflned as

oy = ban~t [(x -8y -n - z2][yB - _»_y(g)]
fx - ) - vg) - 28][¥(e) - n]
o = o™ [(x - &) - ) - 28]y~ W ()]

)y - ) - 22[¥a(n) - £]

[

and where the regions Se and 5-3e are regions of the wing merked on
figure 21. The region Sl* is the vertically-striped region on the wing
surface., The region SE* is the horizontally-striped region of the-wing
surface. It 1s clear that S5;* and Sy* intersect each other and 8g
on the wing.

The region 57 lies off the wing and is vertigally-striped in

figure 21, This region is the sum of the reglons over which are taken the
integrels containing ' for k=1, 2, . . ., n-2 in equation (22.15).

The reglon Sy lies off the wing and is horizontally-striped in
the figure. All the integrals are evaluated over it which together con-
tain ek fOI' k:'-]-, 2, L) . LX) Il-2. -

If M is such that S 1in the baslc formula intersects S, falling

in ‘the characteristic cone from En and lying outside the cone from En',
then n must be replaced by n-1 i1n the second sum and in the last term
of equation (22.15). If S falls inside the cone from E,' and lies
outeide the cone from E, +then n-l1 must be substituted for n in the
first sum snd the penultimate term of equation (22.15).

Let us note that the sums in equation (22.15) are defined for n >3
and the last two terms in equation (22.15) for =n > 3.
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If n=1, then the formula for the velocity potential in equa-
tion (22.15) is limited to the first two terms. This result was already

obtalned before.

If n=2, the formulas in equation (22.15) is limited to the first
four terms, the region of integration is shown in figure 22.

Thus, to evaluate the velocity potential, by equation (22.15), at
e point M(x,y,z) which has the projection M'(x,y,0) shown in fig-
ure 21, it is necessary, first of all, to compute 6, for k=1, 2, 3,

., n-2 by equation (22.3) for k22 and by equation (21.8) for
k=1 (6y' correspondingly).

As an example we present the expression for the potential for n_3
in the expanded form

cpo(x,y,z) =- 2 A(E,m)dn dt 2 A(g,n)an at
aﬁkx‘g)(y-“) - 27 &gﬁx-g)(y—n) - 2%

ﬁgff A(E,m)gq & dg-_ﬂ A(g,m)9, an at .

yrx-g)(y-n)-z o* x-§)(¥-—'ﬂ)-z

1 fwg(xA)fﬂn) w(e) A1) < nrg,

5 dn*dt dn +
w3 Jy, 209N T - i - G - ) - 2

1 frlf.(y]g)f\lfg(i) fiz(n) A(E*,m) \ﬁz () - & a,

: i _ .
© o T MW TS G- oE e e - 2

(22.16)

dgtdn 4t
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The reglon of integration in the last two integrals over £t and 1
ere, respectively, the regions S; and S, Ilying off the wing and shown

gtriped in figure 23.

Formula (22.15) for the velocity potéﬁtial contains an n-iterated
integral with the integrand an arbitrary given functlon on the wing:

aPO/BZ = A(x,y).

In the general case, 1t 1s not possible to reduce the number of
iterations 1n the computation of equation (22.15) for arbitrary wing-
tip shapes since the arbitrary functlons V¥, V,, and A all contain

the variebles of integration. If the functions ++ and Vv, are fixed

then the wing to be considered has completely determined tips and it

is easy to see that all the integrals in equstion (22.15) are reduced .
to double integrals taken over the wing surface with Integrands containing
the arbitrary given function A(x,y) which defines the form of the wing
surface.

Let us burn to the wing of small span which has g breek in its
leading edge as shown, for example, in figure 2k.

The derivative Bmo/az mey be eveluated in oq end ds by equa?

tions (21.8) and (22.3). It is impossible to evaluate J9g/dz in 0%

using equation (22.3) and, therefore, a surface-integral equation must
again be constructed which will also reduce to two Abel equations but
with more complex right sides than occurred for 03 in figure 19.

Hence, we note that it i1s Impossible toconstruct one formula which
would determine Jpg/dz for all cases, but a single method of solution.

maey be shown to depend on the wing plan form.

The formation of the surface-integrasl equation for amo/az is

explained above, for each characteristic region. BEach of these equa-~
tions 18 of the same type, reducing to two Abel equations with different
right sides in different ceses. In particuler, the right side of one
of the Abel equations, in some cases, may be identically zero.
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3. INFLUENCE OF THE VORTEX SYSTEM FROM THE WING FOR STEADY WING MOTION

1. To study the infiuvence on the air flow of the trailing vortex
system in steady motion, it is convenient to operate with the acceleration
potential ¢y which, in linearized theory, is related to the velocity

potential derivatives in the characteristic coordinates through
¢O = u{%x + Qoy} (23'1)

Let us turn to the wing shown in figure 25. Let us take a point
M(x,y,0) on the wing surface, which lies between the characteristic
cones from D and D!'. Therefore the trailing edge DT affects M,

Using equation (21.15) the velocity potential at M .according to
equation %21.1) is

(x,7,0) = - = A(f,n) dn &t 3 8(&,n) an at
" ax s_‘;/L -8 -1 = sffﬁi- Yy - n)
=B17R0 2

(23.2)

where the reglons s = 87 + sg and s, are shown in figure 25. The
region s5 belongs to §, considered In section T of part I and shown
in figure 11. We denoted the derivative dpg/dz in Q by 3§ where
this derivative is an unknown.

We subject Xpo/dz +to an additional condition, anslogous to the

Kutta-Joukowsky incompressible-flow condition. We assume that the
perturbation veloclity potential at the trallling edge -~ the arecs I
and D'T' of the wing contour (figs. 11 or 25) - and therefore, the
specified derivative, 1s a continuous function. Then the respective
conditions are fulfilled:
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8[x, x)] = A[X, X‘(X)] | (23.3)

3[x, % (x)] = A[x, % (x)] (23.4)

where , as above, the function y = %(x) is the equation of DT and
XZ(X) is the equation of D'T' of the wing contour.

In order to obtain the acceleration potential ¢ at M on the

wing surface, we must take the derivative of equation (25.2) in a direc-
tion parallel to the oncoming stream. Before differentiating the double
integral with respect to x eand y we integrate by parts -~ in the first
case with respect to ¢, in the second wlth respect to 7.

During these operations, we use equation (23.3) and the relation
(22.13) which is fulfilled along characteristic lines, and which on the

line DD¥* (fig. 25) is

o), X(%p) &(xp,n) .
2D = - Lol d (23.5)
/;(xp) fy -1 ! ‘/;’1(XD) fy <0 ! =

We keep in mind, moreover, thet the limite of integration of s are
xpS ESxy and X(E)S < ¥p(E) where xp is the abscissa of D and
Xp = xA(y) is the abscissa of A, the limits of 8g are Xp ¢ <t <x
end ¥ (E) SM <y and finally the limits of sp are xp S E< x4 and
x(¢) < <.

After the specifiled operations, the results of differentistion are

A, (&,m) + Aq(E,n)
Wx - &)y ~ 1)

‘dn 4t -

Rox(X,¥) + 9oy (x,¥) = - '2%{ If

Sl'l"So

S (g,n) + 9 (€,n)
L : D~ anat - (23.6)
an “/:[ {(x - &)y - 1)
1 alt, v (8)] O O
o ™

\/(x - €),_:Y - \111(5)] s

(23.6)
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where the arc 1 = RP is shown in figure 25. In order to evaluate the
scceleration potential @y at M according to equation (23.6) it is

first of all necessary to determine % + ﬂy in s5.

2, Let us construct the integral equation for I + 6y. Let us

express the accleratlon potential through equation (21.1) at an arbitrary
point N(x,y,o) outside the wing in Q affected by the vortex sheet

trailing from the wing

fPo(x,y,O) = - L ﬁ A(gﬂ) an & -

" o (- DG -

1 3(&,m)
Dt dn dg
& [ G- 0G -1

U(XJY)

(23.7)

for which the limits of integration in ¢ are xp <& Sx and
x(8) SnSy eandin s, E& veries between the same limits but 1
between ¥q1(&) € 1< x(¢) (fig. 26)-

Tet us differentiste this expression in the free-stream directilon.
Since, according to the condition ((1.10) of part I) the velocity poten-
tial @ off the wing in the x,y-plane remains constant along lines in

the specified direction, then the left side of equation (23.7) goes to _
zero as a result of differentiation and therefore we obtain

y r* pxe) A(E,n)
P dn 4t +
o f"n f*l(g) x - &) (v - 1)

3= 3(g,n) an ag +
x ~/;D _/;(ﬁ) fx - £)(y - 1)

> [* P __aew
o nag +
3 Jo s &) x-8@F -

xp YV

=y 3(&,n)
: d =0 (23.8
‘/;D ’/;(g) }/(x - &)(y - 1) nag )

gl
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We integrate the first two integrals in equation (23.8) by parts
with respect to £, after which we differentiate with respect to x. The
result is - - o

X&)

5 [ ME) g1 [0 Al
dx “/;D J@;(é) (x -8 - n) o X - Xb\“/;l(x) vy o=
: X ‘ '
f“ 120 f (&) Al) g tbat (23.9)
X7 fx - & ot \l"]_(g) 1y ~ 1 -
and
a [* Y o(e,m) 1 v %)
R N4t = — an +
ox “/;D “/;(5) f(x - &)y - n) fx - xp ‘j:%xb) fy =1
fo L3 [T aleam) gqla
XD '/x § ag JX(g) }‘y - 7
(23.10)

Keeping equation (23.5) in mind, which is fulfilled on the characteristic
DD¥ we substitute equations (23.10) and (23.9) into equatlon (23.8)
obtaining -

fx__i_ 2 fy 8(E,m) an 4 2 XE) a(g,n) an +
xy £ - €98 Yx(&) f¥y - n ot Yy (8) fy - n

B P e g, P AN atas - o
& fx(&) o fh(g) /¥ - n (25.11)
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This equatipn is equivalent to

3 [¥ ax,m) 3 X%) p(x,m)
o / nr f\lfl(x) /‘Y-'ﬂdn-l-

(x)
2 3n) gn B VAN 4 Lo (23.12)
“/;j(r ! “/;rl(x) fy -1 ! -

according to the inverslon of the Abel integral equation.

We integrate the last two integrals in equation (23.12) by parts
with respect to 1 after which, as above, we differentiate wilth respect
to the parsmeter. Using equation (23.3) we arrive at

fy 3. (x,m) + 8, (x,n) e fx(x) A (x,m) + Ap(x,n) an -
x(x) vy - ¥y (%) fy -

f;fiflffélu[l - dﬁ;ix) (23.13)
iy = ¥y (x)

Let us apply once again Abel‘s inversion formule, keeping in mind
that the right side of equetion (23.13), generally speaking, is different

from zero for y =X (x) we obtain the solution for ﬂx + ﬁy as

x(x)

==,
Jy - X (x) ‘l’l(x)

/ L
‘8x(X,y) + ﬂy(X)Y) = - ;

{Ax(x,n) +

| - ' dyy (x)] X(x) - ¥ (x)
Aﬂ(x:ﬂ)‘r-@%—ﬂ dn - :'—r——r;__]m A[X:‘l’l(x)] 1- ;x ry = qu(i)

(23.14)
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Using equation (23.14) we prove

g (£,m) + 9 (&,m) A (é,n) + A _(E,m)
fg dndg_-ff 0 < anat
5, Ve -8G-m . 5 -8 -

o R {l_-d’*'l“)}dg
1 dg

1 f(x - &)y - v (8)]
(23.15)

where 17 = RQ. The regions sp and s are shown in figure 25.

Substituting equation (23.15) into equation (23.6) we obtain the
formuls for the acceleration potential

o (x,¥) Ag(g,n) + An(E,n)
0 T et JGT Ay
Vi - 8 - 1)

'Lf A[&,\kl(g)] {l- d‘lfl(ﬁ)}dg

an d& -

(23.16)

where L = QP, the direction of the integration 1s shcwn by the arrows in
figure 25,

Thus to evaluate the acceleration potentiel at M on a wing sur-
face two integrals, the surface integral over s; and the contour inte-

gral over L of the leading edge are to be compubed.

Let us turn to equation (23.12) and write it in the form

B L/“Y {a¢b} an_ . 3 L/“y {éfg} 4 _o
Ox Jyp(x) (92)amo T -1 3 Yyy(x) | 92)z=0 ¥ - 0

(23.17)
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Interchanging the role of the coordinsates in equation (23.17) we
obtain

3 x {%} a . 3 fx {BCPO} & _ o
x JP ()32 fuo fx - & W YHEILOZ)a0 fx - &
(23.18)

where X = \lrl(y) is the equation of E'E of the wing leading edge solved
for x in terms of Y. :

Tt 1is possible to consider equations (23.17) end (23.18) as rela-
+tions which hold along characteristic lines 1n the x,y-plene where the vor-
tex sheet has effect.

Reletion (23.17) is fulfilled along characteristic lines parallel
to the Oy-axis (the line NQ on figure 26); the y-parameter is the
ordinate of e point lying off the wing to the right, in the effective
fange of the vortex sheet (point N in fig. 26). Relation (23.18) is
fulfilled slong lines parallel to the Ox-asxis; the x parameter is the
gbscissa of a polnt lylng off the wing to the left.

If the point N 1is thus located to the right of the vortex line DH
or to the left of D'H', then along characteristic lines the respective
relations (22.13) and (22.14) also hold.

If N is located to the left of DH or to the right of D'H?,
respectively, then relations (23.17) and (23.18) hold along characteristic
lines. In this case, equations (22.13) and (22.1%4) are not fulfilled.

In this section, we wrote down the transformetion and obtained
the formula for the accleration potentisl in the simplest case of the vor-
tex sheet affecting the flow.

For any other case, the potential ¢g 1is found in an analogous way.
In each case an integral equation i1s constructed for 34, + 'By. All the

integral equations are of the same type but with different right sldes in
the different cases, and they are inverted by means of a double application
of the Abel integral equation inversion formila.

In the following paragraph we present results defining the accelera-
tion potential ¢y at any point of a wing surface.
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%, Let us £ind the velocity potential mo(x,y,z) at a point M
lying within the characteristic aft-cone from D and ouwbside the charac-
teristic aft-cone from D', The reglon of integration S 1in the funda-
mental formula (21.1) intersects the plane region O (fig. 11) in this
case.

The projection M' of M on the x,y-plane is shown in figure 26a.

Starting from condition (1.12) (of part I) we express the derivative
avo/az for any point where the veloclty potential equals zero and where,

simultaneously, the effect of the vortex sheet is Telt through the same
derivative at points located upstream on the same characteristic line
with the point studied. To do this we reason Just as we dld to obtain
formula (21.8). We then obtain the desired representatlion for the
derivative

é?g.= - L 1 ' JFX}yD'XD qu(x,n,z) /k tYp - ¥y -0 an
oz 7 vy - x - yp + Xp ¥ (x) Sz o ¥ -1
(23.19)
Using equation (23.19) 1t is easy to prove
y-o
xp¥ Q[ X-F {aqb} an ae L
% * E+yp-xp | 92) ,_g ‘/(x TG - ) - 22
i foz* JF§+yD_xD_{§99} n at
x* Yy (8) 0z Jo0 flx = E)(¥ - 1) - 22
(23.20)

by the same methods used in proving equation (21.15).
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The 1imits of integration in equation (23.20), xl* and xe*, are
any numbers satlisfying xy s X1 %* s xp and xp s x%* s Xxp where xp 1s

the coordinate of the point F shown in figure 26a. The point F is the
intersection of the vortex line DH, which has the equation
¥y =x+yp - Xp, with the characteristic cone from the point with the

coordinates (x,¥,%z).

In particular, there holds

-

I/‘{aq’o}, an_at - /] {a“’o} dn dat
% -0 /(x-&)(y—n) - 22 ' 97 J2=0 rl(X- )y - 1) - 22

S2 Sy

(23.21)
where the regions S and S, are shown in figure 26a. The reglon Sq
is marked with horizontal and the region So with vertlcal crosslines.

Keeping in mind equation (23.21) we obtain an expression for the
velocity potential at the point M dJdefined above

CPO(X,Y,Z) = - -J; A(E,T])G.T] ag X 'ﬁ(g,ﬂ)dﬂ ag
e e i

(23.22)

where Sy and S' are shown on figure 26a.

Therefore, the region of integration S 1n equation (23.22) inter-
sects the wing surface only in that part of § which lies to the left of
the vortex line DH.

Before evaluating the velocity potential by equation (23.22) it is
necessary to determine Bch/Bz =3 1in the region ' of Q.

We find d from the solution (25.14) if the_latter is integrated
in a free stream direction between N(x,y) and N(x,y). Hence in order
that the obtained expression correspond to the value of the deriva-~
tive OPy/0z =8 in Q +to the left of DH, the coordinates % and §
on the vortex sheet should be taken as the solution of the equa-
tions § - R - yp+xp =0 and §F = X(Z) and the value of 9(%,§) 1is

determined from equation (23.3) at the trailing edge.
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If the X and § coordinates are set equal to X = xp and
¥ = y-x&xb and the value of 9(%,¥) is determined on DH from the .

solution of equation (21.8) then the obtained expression will correspond
to the value of 9¢p/dz 1in Q 'to the right of DH off the vortex sheet

but in 1ts sphere of influence.
iy, PRESSURE DISTRIBUTION ON A WING SURFACE

1. Let us consider a wing of'arbitrary plan form. Let the wing
contour in the charscteristic coordinates be given by the following equa-~
tions: The leading edge E'E by y= ¥(x) or x = ¥;(y), the side

edges ED and E'D' by y = ¥(x) and y = ¥y(x) or x= ¥(y) and
x = ¥o(y), the trailing edges DI' and D'I' by y = X(x) and
¥y =X%(x) or x=Xy) and x=X(y).

Let us find the pressure of the flow on the wing surface.

According to the Bernoulli integrel, the pressure difference of the
flow above and below the wing 1s related to the acceleration potential %0

by
p(x,¥7) = py(x,¥) - pu(x,¥) = 2000(x,¥) (2k.1)

where p 1is the density of the undisturbed flow.

We divide the wing surface into the ten characterisitic regions shown
in figures 27 and 28.

Let us express the stream pressure on the wing surface in each
characteristic region by the function A(x,y) which 1s glven on the wing,
defining the shape of the surface.

We denote by M and M with a subscript the ends of line segments

parallel to the coordinate axes and lying in the x,y-plane, It is clear
that these segments are parts of the lines of intersection of the charac-

teristic cones, with vertices in the x,y-plane, and the x,y-plane itself.

Reglon I is the reglon where the tip effect ig not felt. This part
of the wing lies ahead of the characteristic aft-cones with vertices at

E!' and E.
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Reglon IT is where the tip effect is felt but not the influence of
the trailling vortex sheet. This region lies between the characteristic
aft-cones from E! and E and D and D!, At M of region IT, for
which the lines M]_M3 and MQM;_‘_ intersect on the wing as shown on

figure 27, the pressure difference is

p(x,y) = - % ij(g,n;x,y)dn aE + ‘-;—p ﬂD(E,n;x,y)dn ag +
51 So

o avy (€) ¥y) - -
— B[g,q,l(g);x,ﬂ{l - 2t }- u?p_ {l - é‘-g—irz)—}f BL‘F(Y);“;X:YJG.T] -

L In

ayo(x)
% {1 - — } f B[E, ¥ (x) 3%,y 4k (2k.2)

L2

vhere Sq is the region of the wing bounded by the lines MMy, MMy,
M1M3 and MM, S, 1is the reglon bounded by MMz, % and the

arc L = Mh-MB and where

g (E,m) + Aq(E,m)
fx - 8@y - n)

A(E,n)

fx - &)y - )

D(g,n;x)Y) =

B(&,n;x,y) =
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If the lines M1M3 and M2Ml+ do not intersect c on the wing, as shown
in figure 28, then the pressure difference is -

~ dayy (&)
up . up . 1
P(x;:)f) = - ?I[D(ﬁ,ﬂ,x,ﬂd'ﬂ dg - ?fB[g""l(g)’x’y] {l - m }dﬁ -
So L

“?t_p {1 - d‘;iry) }ﬁﬁr(y),n;mr]dn-—

Ly

ayr (x) :'?:
%p{l - §.x }fB[&,\lrz(x);x,y]dé (2k.3)
Lo .

where Sq 1s bounded by the lines MM, M1M3, MMy, MM, and
L = M5NI}+.

Arrows in the figures show the direction of inté;g‘ation in the con-
tour integral and the integrals taken over the lines Iy = MBMl and

Ly = MMp.

In reglon ITI, which lies between the cheracteristic cones from E
end the characteristic cones from E!', D and D', the pressure differ-
ence is

- dy (&)
Ge) = - 2 [[ 206 niman as - R [ B[t (0)m] {l‘ ig }dg i
51 L

%’i{l ; d‘g’y )} JECGRENEY (k1)

Lo

The pressure difference in reglon IIT® is expi‘esééd in the same way.
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p(x,y) = - —ff D(&,n3x,y)dn 4t -

u"fB[g wl(g),x,y]Jl - qu(g)} at -

ks

E{l ) dwiri(cx)}Lf B[g,ﬂre(x);x,y]dg (24.5)
2

Reglon IV lies in the characteristic cones from E and E' apd D
and outside the characteristic cone from D', Reglon IV! 1s defined cor-
respondingly. At M(x,y) of region IV, when MMz and MM, intersect

on the wing, the pressure difference 1s

p(x,y) = - “E[/.D(E,n;x,y)dn at + %JD(E,n;x,y)dn ag +
s

%fB[&,‘lfl(E);x,y] {l ~ dwizg)}dg -
L

I8

i L2 el

ue {l - d\%—ix} }fB [E,,\lrz(x);x,y]dﬁ (24.6)

For the M, for which M and do not intersect on the wing
] 3k )

the pressure difference is expressed by equation (24.5). Similarly, the
pressure difference for region IV! is

p(x,y) = - E;F:-ff D(&,n;x,y)dn 4 + ‘:t—gffD(&,n;x,y)dn g +
S1 So '

B[&, ¥ (8);5%,] {l - d‘kl(g)}dg -
L
u—;? - %@- f B@(y),n;x,y]dn (2k.7)
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irf MiMB and MM, Intersect on the wing. If these lines do not inter-

sect on the wing the pressure difference can be expressed by egua-
tion (24.4).

In reglon V, which lies within the characteristic cones from E, E?,
D and D' where the influence of the tralling vortex sheet is felt, the
pressure dlfference 1s

p(x,y) = - %ﬂD(ﬁ,n;x,y)dn at + %EL/]D(&,n;x,y)dn ag +
S1 S2

f [E, ﬂfl(g)’x:Y]{l = ‘#l(g)} § (2)'"'8)

if MMz and MpMy intersect on the wing, and

P(X)Y) = - —‘[[D(g W,X,Y)dﬂ ag - —- B[E. Wl(g),x;y]{l - ‘Figg)} at
S1 L
(2%.9)

1f they do not intersect.

In region VI, lying in the characteristic cones from E and D
and outside the charamcteristic cones from E! and D! (also in
region VI') the pressure difference is expressed by equation (24.9). The
pressure difference for resion I has the same form.

Thus, if M, at which the pressure is desired, is in one of the
reglons II, IV (Tv? correspondingly), or V, as shown in the flgures, then
to set up the regions and contours of integration in the pressure formulas
1t 1s necessary to proceed as follows: Draw two lines MMy and MM,
upstream from M +to intersect with the side (or tralling) edges of the
wing. From these polnts of intersection M} and Mp ageln draw lines

MiM; and  MpM, upstream to intersect the leading edge E'E at M3 and,
M.

If M is in reglon IIT or VI (III' or VI' correspondingly) then from

M draw the lines MMy and M¥; upstream; the line MM, Immediately
intersects the leadlng edge E'E at My ; MMi intersects the side edge
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ED din the case of reglon IIT or the tralling edge DT! in the case of
region VI. From the point of intersection Mj agein draw the line M1_M3

to intersect the leading edge E'E,
Let us consider particular cases.

(I) Let the side edges of the wing ED and E!D' be straight
lines parallel to the free stream. In this case

and, therefore, formulas (24.2) and (24%.3) are simplified substantially,
because the last two terms In them become zero.

A perticular wing of this class is the rectanguler wing.

(II) Let the wing surface be such that
D(E:TUXJY) =0

This holds, firstly, when the wing surface ls a plene, il.e., the

function A = "uBO/k 1s given on the wing, where Bp 1s the angle of
attack, as a constant. '

Secondly, this holds when the wing surface is linear, generally
speaking, uncambered, with generstors lying in planes parallel to the
¥ = x~-plane (x,z-plane in the original coordinates), then the derivative
of the functlon A(x,y) given on the wing satlisfies the rela-
tion Ay = - Ay. In particuler this is a wing with a cylindrical surface

formed Iin the manner described.

In these cases, only the contour integrals and the integrals over the
line segments ILj and Lo remain in the formilas for the pressure.

(III) The pressure formlas teke an especially simple form when
the wing surface is such that the function D(£,n;%,y) =0 on the wing,
at the same time a5 the side edges 'ED and E'D' are straight lines
parallel to the stream (combination of cases T and II). In this case , The
pressure difference ebove and below the wing in any region can be repre-
sented by '

9

u avy (&)
p(x,y) =% —pﬂf B[, ¥y () 5x,7] {l - —ig—} ag  (2k.10)
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where the plus sign is taken if the lines MiMB and MM, intersect on
the wing and the minus sign 1f these lines do not intersect on the wing.

Hence, the pressure on the wing surface is expressed by the curvi-
linear integral taken over ‘the arc L of the wing leading edge.

(IV) Let the wing plan form be such that the points D and E
and E' and D' colncide. In this case, calculation of the pressure
on the wing surface is also simplified because there are no regions II,
ITI and III' on the wing. In particular, the trapezoldal wing belongs
to this case.

2. The pressure formules show that there can exist a geometrical
locus F¥(x,y) = O where the pressure on the wing p(x,y) = O. Down-
stream of this geometrical locus, the pressure difference p = Py - Py

is negative.

For example, if D(£,n;x,y) = O on the wing then the geometrical
locus F¥ = 0 is found in the region of the wing lying inside the char-
acteristic cones with vertices E and E'  and passing through either
regions II and IV or through IV and V or or lying entirely in V.
The first case occurs only when K, the intersection of the lines 01K

end OpK parallel to the coordinate exes, &ppears to be outside the

region of influence of the vortex sheet, as shown in Ffigure 27, for
example, In all these cases, the polnts T and T'!' are on the geo-
metrical locus of F¥ = O, The curve F¥ = 0 may also be shaped convex
downstream and not as shown on the figures.

Let us write the equation for the geometrical locus F¥ = O,

In region II:

¥
ey = () {1 e (y) a

ARAC) 8 ) fx- ey - we)]

sl RG] [ an f{ RG]
2{1 ay } 31 B =S | Y e

(2k.11)
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In region IV:

*e) fi(y) [ .dwl(g)} a
23 x’y - o - - -
‘lfl[_‘lfg(x)] { dg f(x - g)[}" - ¥y (&) ]
[ . %}/ x - ¥Qa(x)] by
2L1 A 0 (ek.12)

In region V:

I
o

F*(x,y) = ¥ ()] - X&) (24.13)

If the side edgees of the wing are lines parallel to the free stream
direction or the wing is such that E apd D (BE' and D' correspond-
ingly) coincide, then F¥ = 0 tekes a simple form. In region V 1t is
not changed, but in regions II and IV, we have, respectively, in place
of equations (24.11) and (24.12)

=H [IL&E)] - ¥y =0 (2+.14)
and
=¥ )] - X&) =0 (24.15)

In all cases when the pressure dlifference on the wing, according to
equations (24.2) to (24.9), is expressed only by means of curvilinear
integrals teken over L of the wing contour, it is easy to construct the
zero-pressure curve graphically, keeping in mind that the zero-pressure
curve in these cases is the geometrical locus of such points M on the
wing surface for which the polnts M3 and My, on the wing contour coin-

cide. That is, the arc on the leadlng edge over which the curvilinesr
integral is taken shrinks to a point.

We construct the zero-pressure curve as follows: From each point
Ny on the leading edge we draw the lines NpNy and NON2 parellel to

the coordinate axes intersecting the side edges ED and E'D!'! as shown
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in figures 29 and 30, or the trailing edges as shown in figures 31 and 32.
From the points of intersection Ny and N, within the wing again we

draw lines N{N* and NoN* parallel to the coordinate axes., The geo-

metrical locus of N¥*, where these llnes lntersect, is the desired zero-
pressure line.

For example, for a symmetric wing, if the side edges ED and E'D’
are parallel to the stream, the zero-pressure curve passes through G
and G' and is the line equidistant from the leading edge (fig. 30).
The points G and G' are shown on figures 29 to 32, If E and D,
E' and D', correspondingly, coinclde and the trailing edges are straight
lines then F¥ = O passes through G and G' and is the curve obtained
by inverting the leading edge E'E relstive to the cember of inveér-
sion O%, The center 0% is the point of intersection of the trailing
edges (fig. 31).

If the wing is asymmmetric and if the side edges ED and E'D' are
parallel to the free stream then the zero-pressure curve is the reflection
of the curve equidistant to the leading edge and passing through G and
G', relative to the line equidistant from the side edges (fig. 29). If
the points E and D, and also E' and D', coincide and the trailing
edges are stralght lines making identical angles with the stream then the
geometrical locus F* = 0 1s the reflection of the curve obtained by an
inversion, with center O* of the leading edge and passling through the
€oints ? and G' relative to the line equidistant from the side edges

fig. 32).

3. A1l the obtained results are generaliied to the case when the
leading edge E'E is given not by one equation y = ¥;(x) but consists of

segments of smooth curves given by y = Wlk(x), where k=1, 2, « « o, 1

with n any integer. In such cases the surface and contour integrals in
the formulas for the pressure should be divided into component parts for
the actusl evaluations.

The side, ED and E'D', and trailing, DI' and D'T, edges may
also be piecewlse smooth.

The same generallzation holds for the previous three sectlions.

4., A1l the results are generalized in the case of the asymmetric
flow over & wing which occurs, for example, in the motion of a yawed wing.

Tet us consider a wing of arbitrary plan form with an angle of
yaw 7y &s shown in figure 33.
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The pressure on the wing can be computed by the same formuilas if
the equation of the arc Eg'Eg, in the coordinates transformed to the

origin 0, is taken as the function y = yy(x).

The equation of EgDp (correspondingly Ey'Dy') is y = ¥(x). In
this case EqgDy acts as the wing tip. .

Finally, for the trailing edge, DoTp, we have the equation y = X.(x)
(correspondingly for Dg'Tg').

5. As is known, knowlng the acceleration potential or the veloeclity
potential on the wing surface, we can easlly compute the aerodynamic
forces on the wing.

In order, we represent the aerodynsmic-force formilas using the ori-
ginal coordinete system shown In figures 1 and 2.

The 1ift P on the wing is
P = Qpﬂ oo(x,y) ax dy (2k.16)
Z

where the region of integration in £ is defined by ¥o(y) £ x £ X (y)
end yp' Sy S yp vhere x = \lro(y) is the equation of D'E'ED and
x = X1 (y) 1is the equation of the trailing edge D'TT'D (figs. 27 and 28).
The limits yDl and yp &re respectively the coordinates of D' and D
of the wing.

Since sccording to linearized theory ¢o(x,y) =u Bcpo/ax ‘then

integreting (24.16) over x =and keeping in mind that the veloclty poten-
tisl 1s zero on D!E'ED from conditions (1.11) and (1.12) of part I,

the 1ift is

P = 2pu f 7D % () 7]y
¥,

If the trailing edge is pilecewlse smooth, then in actual compute-
tions the combtour integral must be divided into its component parts.
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The expression for the moment Mby due ‘o lift1relative to the
Oy-axls is

Moy = 20 \/F Pplx,y)x dx dy (24 .17)
5 .
The moments relative to the other axes have the same form.

6. The explained theory can be generalized to the case of the flow
over a tall or over a biplane in tandem.

We proceed as follows to dbtain formulas to comptbte the pressure on
the tail teking into account the influence of the wing. . -

Express Qox + 9y &t M(x,y) on ‘the tail using the basic formule
(21.1). In the expression for Pox *+ Foy under the integral sign insert

ﬁx + ﬂy on the vortex sheet. The function 6X + 6y is found from the

Abel integral equation which is constructed by the method of section 3.

In the case of flow over the tall the different characteristic
reglons on the taill must be separated just as was done in figures 27 and
28 for the uniform motion over a wing.

Only in this case, to divide the tell surface Into. reglons, there
must be taken into account, on the one hand, the wing effect and on the
other hand, the tip effect and also the effect of the vortex sheet of
the taill. itself.
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APPENDTX
EXAMPLES

The following examples, solved by N. S. Burrow and M, M. Priluk,
will serve to i1llustrate the methods explained before,

A. Arrow-Shaped (or Swallowtail) Wing

Let us consider the arrow-shaped (.or swallowteil) wing plen form
where the leadling edges are formed by the segments AD and AD' and
the tralling edges by the segments DB and D'B as shown in figure 3k,
Let the following geometric parameters be given: &7 +the angle between
the leading edge and the free-stream direction; B, the angle between

The equations of the wing leading edges in the x,y characteristic
coordinates with origin at O are

line AD

1

¥ o= = 1 <« cob o¥* tan B1)x; + 21 cot o*
1 l+cotcr,*ta.nsl( L)%

line AD'

_ 1
l-cota.*ta.nﬁl

¥y {(l + cot a¥ tan B1)x; - 21 cot a¥

and the trailing edge equations are

line DB
_ 1
1 + cot o* tan B

vy (L - cot a¥ tan Bo)xy + 21 cot c,*}

line D'B
- 1
1 ~ cot a¥ tan 8o

Y1 {l + cot a¥ tan 52)}(1 - 21 cot or,*}

vwhere the angle o* 1s the semispex angle of the charscteristic cone.

Let us consider the wing for which &1 > a* and &, > a¥; that is,
a wing surface not affected by the trailing vortex sheet, T
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We will assume that the wing surface is a pla.ne_ inclined by an

angle Bg %to the free~stream direction. Therefore, the derivative -:—ch
Z

willl be a constent everywhere on both sides of the wing surface and will
be glven in the form

5 :
g;fg = = ufy tan o¥ (1)

In conformance with the method we divide the wing surface into the
three chargcteristic regions Ia, Ib, and Ic, with each region having its
own analytic characteristic solution and taking into account the angular
point A of the leading edge (fig. 34). Let us compu'be the stream
pressure on the wing surface in each region,

Using the formula (5.9), we find the pressure in'the regions Ia and Ib,

lying outside the characteristic cone from A, to be

ol
= PO = 21.120‘30 tan a¥* ) (a2)
u

—_— -1 —

a2

This formulas shows that the pressure in regions Ia and Ib is g constant.

In region Ic, lying inside the characteristic cone from A, we find,
by using the same formuls, the pressure to be

2u2pBy tan By 1.2 'ba.n"lr - cot o* tan 3 1 cob &7 - xl

\]cota o¥ tan2 8; - 1 o Vl + cot o¥ tan &, ¥y - 1 cot 81_

p(x,y) =

1[L + cotra¥ tan By 1 cot By - X;

(43)
Vl-cotcx,*ta.nalyl ~ 1 cat &

% tan™
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In the original coordinate system shown in figures 3L and 35, (A5)
becomes

2uSppo ten B
Jeot? a* ten? &; - 1

P(X:Y) =

1.24% ~1 l-cota.*'l;a.nallco‘bSl—x+ycot0.*+
- & tan
n 1+ cot o¥ tan 89 y cob a* + x - 1 cot By

2 tan-l 1+ cob o* tan &7 1 cot By - x + y cot o¥ (AL)
T 1 - cob o* tan &7 y cot a¥ + x - 1 cob By

These formulas show that the pressure is constant along each ray from A
in region Ic.

Shown in figures 36 and 37, respectively, are the pressures along &
section A4B; parallel to the y-axis and along the section ASB, par-

allel to the x-axise.

The 1ift P of the consldered wing is

P =

2ulppy1®(ten &y - tan 8p) | 2 . Jcot a¥ tan 81 - 1

tan 82\1c0t2 o¥ tan? &7 - 1 cot o* tan 33 + 1

» tan & - tan 5y tan_l\/cot o* ten & + 1
7 tan 57 + tan &, cot o¥ tan &y -1

l-l- 'ba.n5 82 ' tan_l\f:ot o¥ tan 52 -1 (As)
T tan 81 (tan® 81 - tan? 8p) cot a¥ ten 8y + 1

The 1ift coefficient CZ is
he~ ‘tan cot o* tan 5y ~ 1
o=t l'%ta'n-l\/tm*ta.nsl 1
\Ic:ot2 o¥ tan? &7 - 1 cot « 1+

Cy =

\
8y - btan cot o¥* tan &7 + 1
2 tan O3 Sgtan"ll 1 +
X ten 37 + ten 5, cot a* tan 83 ~ 1

1.6BO 'ban2 B ten_lfzot o¥ tan 8o ~ 1

¥%
x(ten & + tan Bp)\eot? a* tan? &, - 1 cot ¥ tem Bp + L

(46)
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As is well known, the wave drag coefficient C, is related to the Lift
coefficlent through Cy = BpCye.

Let us consider particular cases of (A6). In the limit as Sl—ang,
we obteiln for the trianguler wing

C, = 4By tan o¥ (A7)

the well known resulth for the lift coefficient of a triangle,

Compering (A6) and (A7) we conclude thet for idemtical wing speeds
and identical angles of attack the lift coefficient of the arrow~shaped
wing exceeds the 1ift coefficient of the trisngular wing.

In the particular case when 8p = 81, we obtaln the infinite span
arrov-shaped wing. In the limit as &,—>87 (46) yields
LBy tan 8y
g =

C, =
\eot2 o* tan? &y - 1

This result shows that the lift coefficlent of an infinite spesn arrow-
shaped wing equals the 1ift coefficilent of an infinits span slipping
wing with slip angle 8.

Formula (A6) ‘shows that with increasing &; and 5y, the angles

between the leading and tralling edges and the free'sﬁfeam, respectively,
the wing 1ift coefficlent decreasses., The dependence of C, for an

arrow-shaped wing on 8; eand &, 1s shown in figures 38 and 39.

B, Semiellilptic Wing

Let us consider the wing plen form which is half an ellipse as shown
in figure 40. Let the semiaxis a; and by of the ellipse be given,
Let us sssume that the wing moves, as shown in the figure, In the direc-
tion of the axis of symmetry.

4See the work of M. I. Gurevich: On the Lift Of an Arrow-Shasped
Wing in Supersonic Flow., Prik, Mate. Nekh., Vol. X, No. 4, 1946,
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The equation of the leading edge, the line D'D, in characteristic
coordinates with origin at 0 is

V1 =-%

and the trailing edge equation in these same coordinates is

gy = (alz - 'b12 cot? a,*)xl t 281Dy cot a,*JEf %+ b;E cot2 a* - xq°

a.12 + blg CO'b2 a*

In the original X,y coordingtbtes the trailing edge equation is

y=-l_-m_a.'.l-.2__:£ (B1)
-8y

The plus sign relates to the arc CD of the ellipse and the minus sign
to the arc CD'.

Let us assume that the wing surface is s plene inclined at an angle
o0,
Bop To the free-stream direction, therefore the normasl derivative -2
Z
1
as given by (Al).

Let us consider the flow ground the semliellipse when the charascter~
istic cones from D. and D' intersect on the wing surface. In con-
formance with the method we divide the wing surface into the four
regions I, VI, VI', and V. Region I is outside the characteristic comes
from D =and D', hence the vortex sheet trailing from the wing exerts
no effect here. Region VI is within the charscteristic cone from D
but outside the come from D'. Conversely, VI' is within the cone
from D' and ocutside the cone from D. Reglon V, however, falls within
both the characteristic cones from D and D'.

Using the formulas, we compute the pressure in each region on the
wing surface. The pressure in I 1is constant everywhere and expressed
by (A2). In VI the pressure distribution in the x,y coordinates is

glven by
P = uzpﬁo tan o¥ x

. _q cot o* By + B_f. + 2a.b cotu.*\,B - £.2
1-;2c-sml 1 ot 1 xB:-‘_Ll s A N (B2)
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where

By = alg + b12 cot? a*, f1. =x +y cot o¥

|

Ba 8.12 - bl2 C:OJG2 o*

Similarly for reglon VI'. The pressure distribution in V is

2u2m30 tan o¥

P(X;Y) = = X

f 2
{_ sin-1 cot o¥* Byy' + Bofy + 2a3by cot ofyBy - £ .

xBy

2
sin-1 cot a¥ Bly + Bpfpy - 2a3bj cot a*JBl - f5

xB, (B3)

where f5 =x -y cot a¥ and By, By, and fy are as defined in (B2).
Graphs of the pressure dlstributions slong the respective sections AyBy
end A,B, parallel to the y-axis are glven in figures 41 and 42 and
along the corresponding segments A5B3 and A434 parallel to the
x-ax1lg are shown In figures 43 and 4. Spanwise section lines AyBq

and AEBE are shown in figure 45; whereas chordwise section lines A3B5

and A B, are shown in figure 40.

If the semiaxis of the ellipse are given in a special way; namely,
if there exlsts between the semlaxes the relation aj = by cot a¥*, then

formula (B2) for the pressure distribution in reglon VI simplifies,
becomlng

cot a*¥ y + /Eale - (x + cot a.*y)2

X

P(XJY) = "ﬁpﬁotan W*YL - 12{ sin-1
(B4)

This corresponds to the case where the characteristic cones wilth apexes
at D and D' intersect the wing tralling edge on the axls of symmetry
of the wing at the point C; consequently the region V on the wing now
vanishes.



NACA ™ 1383 91

In the general case for the flow around a semlellipticel wing, it
may be shown that on the surface of the wing in reglon V, there exists
a8 certain curve along which the pressure difference bebtween the upper
and lower surfaces of the wing reduces to zero. Downstream from this
curve on the surface of the wing the pressure difference becomes nega-
tive. We find the equation for this line of zero pressure by equating
the right side of (B3) to zero.

<a12 + b12 cot2 a.*)h' + (-al2 - 'bl2 cot? ca:,"")2 l‘alable cot® c:.*] 2 +
[(8'12 - 'b12 cot2 cx.*)2 bra.lgbla cotht o* + l6a,_-L 12 cot® a.ﬂya
= Lta.]_abl2 cot2 ao¥ (a12 - b12 cot? u,*)e (ala + 'b12 cot? u.*)

After obvious transformations, we represent the desired geometric locus
in the following finel form

2 2
-—x2+—y2=l (35)
82 b,
where
2a1b, cot a¥ 212 - b2 cot? a*

Rt 2T Ca—-
a1= + by~ cotc « cot a.*/al + by’ cot? o¥

(36)
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These results show that the zero-pressure line 1s the arc of an ellipse
with semlaxes ap and by related through (B6) to the semiaxes a)

and by of the arc of the ellipse which is the wing trailing edge. The
directions of the semlaxes a, and bp coincide with those of the semi-
axes &4 and by. In order that the zero-pressure line should not pass

through the wing surface, the elliptical arc forming the trailing edge

of the wing should not have a real polnt of intersection with (B5), which
determines the zero-pressure line. Comparing (BL) and (BS) we obtain the
following result.. In order that the zero-pressure line, of a plane wing
of semielliptic plan form moving at the supersonic speed u, should not
pass through the wing surface, 1t 1s necessary and sufficient that the
geometric parameters of the wing satisfy the condition

a1 < /3 by cot o¥ - (BT)

Constructed in figure 46 1s an isometric view of the pressure on a
semielliptic wing in the general case when (B7) is not fulfilled and
there exist the reglons I, VI, VI!, V on the wing.

C. Hexagonal Wing

Let us consider the wing of hexagonal plan form shown in figure 47.
Let the leading edges be the lines OEl, and OEl', the side edges EqD

and E1'D' parallel to the free stream, and the trailing edges DB and
D'B. In characteristic~-coordinste space, the wing has plan form as shown
in figure 48.

Let us assign the following geometric parsmeters:
: 0 — the le
the leading edge makes with the free stream; <y — the angle the 2§Siling
edge makes with the free stream; 1 — semispan and h chord.,

Let us consider that wing for which o > g* *

Y > a*, The first
inequality means that the wing surface extends oﬁtside of the character~
istlc cone from O, @pe second inequallty means that the wing surface
is outslde the sphere of influence of the tralling vortex sheet.
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The equations of the lines forming the wing contours sre:

line OFy

¥y =X tan o
or in characteristic coordinates

vy = % 1

Where

m= - cota¥* tan g
L+ctga*tg o

here m< 0, since & > a¥*; the line OFE;°
¥y =~ X tan ¢ and ¥ = mXy
the line ElD

Yy=1 and y; = x3 + 2 cot a¥l

the line El‘D'

Yy=-1 and Y1 = X{ ~ 2 cot a¥l

the line DB

Yy=-x%tan y+ h tan y and yl=%xl+nl

the

93
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and finally D!B

y=xtan y - h tan ¥ and y; = mx) + np

where

my = 1 + cot o¥ tan ¥ ny = 2h cot a¥* tan ¥
1l - cot a* tan 7 1 + cot a* tan ¥

_ 2h cot a* tan 7
2 1 - cot o¥ tan ¥

In conformance with the method we divide the wing surface into the
13 characteristic regions shown in figure 48.

Assuming that the surface of the wing is a plane, we glive the stream-
line condition in the form (Al) and we compute the pressure in each
characteristic reglon. We produce below the results of computing the
pressure on the wing surface as formulas already transformed back to the
original coordinate system.

The pressure in Ia and Ib 1s constant and expressed by (a2).
In Ic +the pressure is

2
2upB _ *
p(x,7) = 9 {- % 4+ tan-l x-cotay

7 V - m cot a¥* f ~-nmlX + cob a¥*y

- tan-1 [~ /x -’- cot a¥ y} (c1)

cot a*y

Hence it follows that the pressure is constant along each rsy starting
from O in Ic, In IXTa

2
2u"pB, (1 - m) ol 2 oot o* (1 - ¥) (c2)
% {- m cot a¥* Y(m - 1)(x + cot a* y) + 21 cot o¥

P(X;Y) =
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In IIIb
2u2p[3 (m - 1) ¥
p(x,y) = 0 tep-l L fE = SOtary
’ 2\ - m cot o¥* l/—_“‘m x+ cota® y
*(31
tan-1 2 cot a¥(1 - y) .
(1 - m)(x + cot a* y) + 21 cot o*
2
N vl £ cot a™ ¥y C
tan X + cota¥* y ( 3)
In IIlc
2u®pBy(1 - m)
PPQ -1 om cot a*(y - 1)
P(XJY) =
% /- m cot a¥ (1 - m)(x + cot a* y) + 2ml cot o¥
(ck)
In IIls
. .
o(x,y) = 2u QBO(:L ~ m) -1 2m cot a,*(y - 1)
? %t - m cot o¥ (L - m)(x + cot a¥* y) + 2mi cot a*

'ban‘l /(71 - m) (x - cot a¥ ¥) - 21 cot o¥ (05)
2 cot a*(1 + y)
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In IIb
2112913 (1 - m) *
p(x,y) = 0 tan=l L /X = cota”y
/- m cot a¥ = m!/ X+ cota*y
tan—l 2 cot q*(z - y) .
(L - m)(x + cota* y) - 21 cot o*
tan-t /(l - m)(x + cot a* y) ~ 27 cot o¥ )
2 cot a*(l + y)
-1 - X - cot a* y o6
tan m‘/x + cot a¥ y}' (c6)
In IIc
20 (m - 1) .
p(x,y) = > pan~1 —= (L - m)(x - cobt a* y) + 2m; cot a*
J - d -
%t - m cot a¥ [-m 2 cot a*(1 + y)

-1 _1 x—'cotor,*:\,r_'_‘b -1 "—_-m/ _
tan J-m{x + cot a¥*y et X + cot a¥ y
tan‘l - m 2 cot “*(Z - Y) (07)
(L - m)(x + cot a* y) + 2m1 cot a*

Formulas for the pressure distribution on the wing surface in
regions IITa', IIIb', IIIc', and IIa' may be obtained from (C2), (C3), (Ck),
and (05), respectively, 1f coordinates sppropriate to the specific
regions are chosen,
The formulas for the pressure show that there is a zero-pressure
line on the wing surface, downstream of which the pressure difference
below and above the wing becomes negative. This line is formed of the
two segments KN and KN' +the equations of whilch are
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y=x tan 8 - 21 tan o* tan ¢ v =-x tan & + 21 tan o* tan o (C8)

and which are parallel to the leading edges Eq0 and Eq'0.

The zero-pressure line may easily be constructed graphically.

Graphical representations of the respective pressure distributions
in the sections A3By, ApBo, AzBz, ApB)y, &nd AsBg parallel to the
y-axis are given in figures 49, 50, 51, 52, and 53.

An isometric pressure surface 1s shown in figure 54 for the
hexagonal plane wing.

Translated by Morris D. Friedman
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102

NACA ™ 1383

Figure 7,



103

NACA T™ 1383

Figure 8.



m m
(¢ \V)
%/
<




4A

105

NACA ™ 1383

Figure 10.
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Figure 14.
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Figure 26(a).
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Figure 29.



NACA ™ 1383

119



120

Figure 33.

NACA ™M 1383



A

NACA ™ 1383

Figure 35.



122 NACA T™M 1383

P
P=P(y)
' ' —=y
K1 l"1 0 M1 N1
Figure 36.
=]
A
P=P (x)
X
o Ko Lo Mo

Figure 37.



NACA T™ 1383

C,
) 3= Const 3, > 8,
C,=C, (8,)
4[30
Cz“ K
1 — 81
© 7
Figure 38.
C,
A S.l = COI’IST
C;z’Cz (82)
=3,
o 2

Figure 39.

123



124 NACA TM 1383

Figure 40.
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Figure 48.
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